Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sander Verheule is active.

Publication


Featured researches published by Sander Verheule.


Circulation-cardiovascular Genetics | 2011

PITX2c Is Expressed in the Adult Left Atrium, and Reducing Pitx2c Expression Promotes Atrial Fibrillation Inducibility and Complex Changes in Gene Expression

Paulus Kirchhof; Peter C. Kahr; Sven Kaese; Ilaria Piccini; Ismail Vokshi; H. H. Scheld; Heinrich Rotering; Lisa Fortmueller; Sandra Laakmann; Sander Verheule; Ulrich Schotten; Larissa Fabritz; Nigel A. Brown

Background—Intergenic variations on chromosome 4q25, close to the PITX2 transcription factor gene, are associated with atrial fibrillation (AF). We therefore tested whether adult hearts express PITX2 and whether variation in expression affects cardiac function. Methods and Results—mRNA for PITX2 isoform c was expressed in left atria of human and mouse, with levels in right atrium and left and right ventricles being 100-fold lower. In mice heterozygous for Pitx2c (Pitx2c+/−), left atrial Pitx2c expression was 60% of wild-type and cardiac morphology and function were not altered, except for slightly elevated pulmonary flow velocity. Isolated Pitx2c+/− hearts were susceptible to AF during programmed stimulation. At short paced cycle lengths, atrial action potential durations were shorter in Pitx2c+/− than in wild-type. Perfusion with the &bgr;-receptor agonist orciprenaline abolished inducibility of AF and reduced the effect on action potential duration. Spontaneous heart rates, atrial conduction velocities, and activation patterns were not affected in Pitx2c+/− hearts, suggesting that action potential duration shortening caused wave length reduction and inducibility of AF. Expression array analyses comparing Pitx2c+/− with wild-type, for left atrial and right atrial tissue separately, identified genes related to calcium ion binding, gap and tight junctions, ion channels, and melanogenesis as being affected by the reduced expression of Pitx2c. Conclusions—These findings demonstrate a physiological role for PITX2 in the adult heart and support the hypothesis that dysregulation of PITX2 expression can be responsible for susceptibility to AF.


Circulation | 2011

Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins.

Svetlana Reilly; Raja Jayaram; Keshav Nahar; Charalambos Antoniades; Sander Verheule; Keith M. Channon; Nicholas J. Alp; Ulrich Schotten; Barbara Casadei

Background— An altered nitric oxide–redox balance has been implicated in the pathogenesis of atrial fibrillation (AF). Statins inhibit NOX2-NADPH oxidases and prevent postoperative AF but are less effective in AF secondary prevention; the mechanisms underlying these findings are poorly understood. Methods and Results— By using goat models of pacing-induced AF or of atrial structural remodeling secondary to atrioventricular block and right atrial samples from 130 patients undergoing cardiac surgery, we found that the mechanisms responsible for the NO-redox imbalance differ between atria and with the duration and substrate of AF. Rac1 and NADPH oxidase activity and the protein level of NOX2 and p22phox were significantly increased in the left atrium of goats after 2 weeks of AF and in patients who developed postoperative AF in the absence of differences in leukocytes infiltration. Conversely, in the presence of longstanding AF or atrioventricular block, uncoupled nitric oxide synthase activity (secondary to reduced BH4 content and/or increased arginase activity) and mitochondrial oxidases accounted for the biatrial increase in reactive oxygen species. Atorvastatin caused a mevalonate-reversible inhibition of Rac1 and NOX2-NADPH oxidase activity in right atrial samples from patients who developed postoperative AF, but it did not affect reactive oxygen species, nitric oxide synthase uncoupling, or BH4 in patients with permanent AF. Conclusions— Upregulation of atrial NADPH oxidases is an early but transient event in the natural history of AF. Changes in the sources of reactive oxygen species with atrial remodeling may explain why statins are effective in the primary prevention of AF but not in its management.


Circulation | 2011

Atrial Sources of Reactive Oxygen Species Vary With the Duration and Substrate of Atrial Fibrillation

Svetlana Reilly; Raja Jayaram; Keshav Nahar; Charalambos Antoniades; Sander Verheule; Keith M. Channon; Nicholas J. Alp; Ulrich Schotten; Barbara Casadei

Background— An altered nitric oxide–redox balance has been implicated in the pathogenesis of atrial fibrillation (AF). Statins inhibit NOX2-NADPH oxidases and prevent postoperative AF but are less effective in AF secondary prevention; the mechanisms underlying these findings are poorly understood. Methods and Results— By using goat models of pacing-induced AF or of atrial structural remodeling secondary to atrioventricular block and right atrial samples from 130 patients undergoing cardiac surgery, we found that the mechanisms responsible for the NO-redox imbalance differ between atria and with the duration and substrate of AF. Rac1 and NADPH oxidase activity and the protein level of NOX2 and p22phox were significantly increased in the left atrium of goats after 2 weeks of AF and in patients who developed postoperative AF in the absence of differences in leukocytes infiltration. Conversely, in the presence of longstanding AF or atrioventricular block, uncoupled nitric oxide synthase activity (secondary to reduced BH4 content and/or increased arginase activity) and mitochondrial oxidases accounted for the biatrial increase in reactive oxygen species. Atorvastatin caused a mevalonate-reversible inhibition of Rac1 and NOX2-NADPH oxidase activity in right atrial samples from patients who developed postoperative AF, but it did not affect reactive oxygen species, nitric oxide synthase uncoupling, or BH4 in patients with permanent AF. Conclusions— Upregulation of atrial NADPH oxidases is an early but transient event in the natural history of AF. Changes in the sources of reactive oxygen species with atrial remodeling may explain why statins are effective in the primary prevention of AF but not in its management.


Circulation | 2005

Development of a Substrate of Atrial Fibrillation During Chronic Atrioventricular Block in the Goat

Hans-Ruprecht Neuberger; Ulrich Schotten; Sander Verheule; Sabine Eijsbouts; Yuri Blaauw; Arne van Hunnik; Maurits A. Allessie

Background—Atrial dilatation is an important risk factor for atrial fibrillation (AF). In the present study, we monitored the electrophysiological changes during progressive atrial dilatation in chronically instrumented goats. Methods and Results—In 8 goats, 2 screw-in leads with piezoelectric crystals were implanted transvenously in the right atrium. After 2 weeks, atrial diameter and effective refractory period were measured. AF paroxysms were induced by burst pacing to determine the baseline AF cycle length and stability of AF. After His-bundle ablation, the above measurements were repeated once a week. After 4 weeks of complete AV block, the free wall of the right atrium was mapped and the atrium was fixed in formalin for histological analysis. After His-bundle ablation, the ventricular rate decreased from 113.8±4.8 to 44.6±2.5 bpm. Right atrial diameter increased gradually by 13.5±3.9% during 4 weeks of AV block (P<0.01). The duration of induced AF paroxysms increased from 4.6 seconds to 6.4 minutes (P<0.05). Atrial effective refractory period and AF cycle length remained constant. Spontaneous paroxysms of AF were not observed. Atrial mapping during rapid pacing revealed that slow conduction (<30 cm/s) was present in 3.7±1.0% of the mapped area (control, 0.9±0.5%, P<0.05). Histological analysis showed hypertrophy without atrial fibrosis. Connexin40 and connexin43 expression was unchanged. Conclusions—Chronic AV block in the goat leads to progressive atrial dilatation, prolongation of induced AF paroxysms, and local conduction delays. The increase in AF stability was not a result of a shortening of atrial refractoriness or atrial fibrosis.


Cardiovascular Research | 2011

Time course and mechanisms of endo-epicardial electrical dissociation during atrial fibrillation in the goat

Jens Eckstein; Bart Maesen; Dominik Linz; Stef Zeemering; Arne van Hunnik; Sander Verheule; Maurits A. Allessie; Ulrich Schotten

AIMS This study aims to determine the degree and mechanisms of endo-epicardial dissociation of electrical activity during atrial fibrillation (AF) and endo-epicardial differences in atrial electrophysiology at different stages of atrial remodelling. METHODS AND RESULTS Simultaneous high-density endo-epicardial mapping of AF was performed on left atrial free walls of goats with acute AF, after 3 weeks, and after 6 months of AF (all n = 7). Endo-epicardial activation time differences and differences in the direction of conduction vectors were calculated, endocardial and epicardial effective refractory periods (ERP) were determined, and fractionation of electrograms was quantified. Histograms of endo-epicardial activation time differences and differences in the direction of conduction vectors revealed two distinct populations, i.e. dissociated and non-dissociated activity. Dyssynchronous activity (dissociated in time) increased from 17 ± 7% during acute AF to 39 ± 17% after 3 weeks, and 68 ± 13% after 6 months of AF. Dissociation was more pronounced in thicker parts of the atrial wall (thick: 49.3 ± 21.4%, thin: 42.2 ± 19.0%, P < 0.05). At baseline, endocardial ERPs were longer when compared with epicardial ERPs (ΔERP, 21.8 ± 18 ms; P < 0.001). This difference was absent after 6 months of AF. The percentage of fractionated electrograms during rapid pacing increased from 9.4 ± 1.9% (baseline) to 18.6 ± 0.6% (6 months). CONCLUSION During AF, pronounced dissociation of electrical activity occurs between the epicardial layer and the endocardial bundle network. The increase in dissociation is due to owing to progressive uncoupling between the epicardial layer and the endocardial bundles and correlates with increasing stability and complexity of the AF substrate.


Journal of Molecular and Cellular Cardiology | 2009

Distinct contractile and molecular differences between two goat models of atrial dysfunction: AV block-induced atrial dilatation and atrial fibrillation

Maura Greiser; Hans-Ruprecht Neuberger; Erik Harks; Ali El-Armouche; Peter Boknik; Sunniva de Haan; Fons Verheyen; Sander Verheule; Wilhelm Schmitz; Ursula Ravens; Stanley Nattel; Maurits A. Allessie; Dobromir Dobrev; Ulrich Schotten

Atrial dilatation is an independent risk factor for thromboembolism in patients with and without atrial fibrillation (AF). In many patients, atrial dilatation goes along with depressed contractile function of the dilated atria. While some mechanisms causing atrial contractile dysfunction in fibrillating atria have been addressed previously, the cellular and molecular mechanisms of atrial contractile remodeling in dilated atria are unknown. This study characterized in vivo atrial contractile function in a goat model of atrial dilatation and compared it to a goat model of AF. Differences in the underlying mechanisms were elucidated by studying contractile function, electrophysiology and sarcoplasmic reticulum (SR) Ca2+ load in atrial muscle bundles and by analyzing expression and phosphorylation levels of key Ca2+-handling proteins, myofilaments and the expression and activity of their upstream regulators. In 7 chronically instrumented, awake goats atrial contractile dysfunction was monitored during 3 weeks of progressive atrial dilatation after AV-node ablation (AV block goats (AVB)). In open chest experiments atrial work index (AWI) and refractoriness were measured (10 goats with AVB, 5 goats with ten days of AF induced by repetitive atrial burst pacing (AF), 10 controls). Isometric force of contraction (FC), transmembrane action potentials (APs) and rapid cooling contractures (RCC, a measure of SR Ca2+ load) were studied in right atrial muscle bundles. Total and phosphorylated Ca2+-handling and myofilament protein levels were quantified by Western blot. In AVB goats, atrial size increased by 18% (from 26.6+/-4.4 to 31.6+/-5.5 mm, n=7 p<0.01) while atrial fractional shortening (AFS) decreased (from 18.4+/-1.7 to 12.8+/-4.0% at 400 ms, n=7, p<0.01). In open chest experiments, AWI was reduced in AVB and in AF goats compared to controls (at 400 ms: 8.4+/-0.9, n=7, and 3.2+/-1.8, n=5, vs 18.9+/-5.3 mmxmmHg, n=7, respectively, p<0.05 vs control). FC of isolated right atrial muscle bundles was reduced in AVB (n=8) and in AF (n=5) goats compared to controls (n=9) (at 2 Hz: 2.3+/-0.5 and 0.7+/-0.2 vs 5.5+/-1.0 mN/mm2, respectively, p<0.05). APs were shorter in AF, but unchanged in AVB goats. RCCs were reduced in AVB and AF versus control (AVB, 3.4+/-0.5 and AF, 4.1+/-1.4 vs 12.2+/-3.2 mN/mm2, p<0.05). Protein levels of protein kinase A (PKA) phosphorylated phospholamban (PLB) were reduced in AVB (n=8) and AF (n=8) vs control (n=7) by 37.9+/-12.4% and 29.7+/-10.1%, respectively (p<0.01), whereas calmodulin-dependent protein kinase II (CaMKII) phosphorylated ryanodine channels (RyR2) were increased by 166+/-55% in AVB (n=8) and by 146+/-56% in AF (n=8) goats (p<0.01). PKA-phosphorylated myosin-binding protein-C and troponin-I were reduced exclusively in AVB goat atria (by 75+/-10% and 55+/-15%, respectively, n=8, p<0.05). Atrial dilatation developing during slow ventricular rhythm after complete AV block as well as AF-induced remodeling are associated with atrial contractile dysfunction. Both AVB and AF goat atria show decreased SR Ca2+ load, likely caused by PLB dephosphorylation and RYR2 hyperphosphorylation. While shorter APs further compromise contractility in AF goat atria, reduced myofilament phosphorylation may impair contractility in AVB goat atria. Thus, atrial hypocontractility appears to have distinct molecular contributors in different types of atrial remodeling.


Circulation-arrhythmia and Electrophysiology | 2013

Transmural conduction is the predominant mechanism of breakthrough during atrial fibrillation: evidence from simultaneous endo-epicardial high-density activation mapping.

Jens Eckstein; Stef Zeemering; Dominik Linz; Bart Maesen; Sander Verheule; Arne van Hunnik; Harry J.G.M. Crijns; Maurits A. Allessie; Ulrich Schotten

Background—Endo-epicardial dissociation (EED) of electric activations resulting in transmural conduction of fibrillation waves (breakthroughs) has been postulated to contribute to the complexity of the substrate of atrial fibrillation (AF). The aim of this study was to elucidate the correlation between EED and incidence of breakthrough and to test the plausibility of transmural conduction versus ectopic focal discharges as sources of breakthrough. Methods and Results—We analyzed high-resolution simultaneous endo-epicardial in vivo mapping data recorded in left atrial free walls of goats with acute AF, 3 weeks and 6 months of AF (all n=7). Waves were analyzed for number, size, and width and categorized according to their origin outside (peripheral wave) or within the mapping area (breakthrough). Breakthrough incidence was lowest (2.1±1.0%) in acute AF, higher (11.4±6.1%) after 3 weeks (P<0.01 versus acute AF) and highest (14.2±3.8%) after 6 months AF (P<0.001 versus acute AF) and similar in the epicardium and endocardium. Most of the breakthroughs (86%; n=564) could be explained by transmural conduction, whereas only 13% (n=85) could be explained by ectopic focal discharges. Transmural microreentry did not play a role as source of breakthrough. Conclusions—This is the first study to present simultaneous endo-epicardial in vivo mapping data at sites of breakthrough events. Breakthrough incidence and degree of EED increased with increasing AF substrate complexity. In goat left atrial free walls, most of the breakthroughs can be explained by transmural conduction, whereas ectopic focal discharges play a limited role as source of breakthrough.Background— Endo-epicardial dissociation (EED) of electric activations resulting in transmural conduction of fibrillation waves (breakthroughs) has been postulated to contribute to the complexity of the substrate of atrial fibrillation (AF). The aim of this study was to elucidate the correlation between EED and incidence of breakthrough and to test the plausibility of transmural conduction versus ectopic focal discharges as sources of breakthrough. Methods and Results— We analyzed high-resolution simultaneous endo-epicardial in vivo mapping data recorded in left atrial free walls of goats with acute AF, 3 weeks and 6 months of AF (all n=7). Waves were analyzed for number, size, and width and categorized according to their origin outside (peripheral wave) or within the mapping area (breakthrough). Breakthrough incidence was lowest (2.1±1.0%) in acute AF, higher (11.4±6.1%) after 3 weeks ( P <0.01 versus acute AF) and highest (14.2±3.8%) after 6 months AF ( P <0.001 versus acute AF) and similar in the epicardium and endocardium. Most of the breakthroughs (86%; n=564) could be explained by transmural conduction, whereas only 13% (n=85) could be explained by ectopic focal discharges. Transmural microreentry did not play a role as source of breakthrough. Conclusions— This is the first study to present simultaneous endo-epicardial in vivo mapping data at sites of breakthrough events. Breakthrough incidence and degree of EED increased with increasing AF substrate complexity. In goat left atrial free walls, most of the breakthroughs can be explained by transmural conduction, whereas ectopic focal discharges play a limited role as source of breakthrough.


Circulation-arrhythmia and Electrophysiology | 2010

Fibrillatory Conduction in the Atrial Free Walls of Goats in Persistent and Permanent Atrial Fibrillation

Sander Verheule; Els Tuyls; Arne van Hunnik; Marion Kuiper; Ulrich Schotten; Maurits A. Allessie

Background—Over a time course of months, the stability of atrial fibrillation (AF) gradually increases and the efficacy of pharmacological cardioversion declines both in humans and in animal models. Changes in fibrillatory conduction over this period largely are unexplored. Methods and Result—Goats were instrumented with an atrial endocardial pacemaker lead and a burst pacemaker. AF was maintained for 3 weeks (short-term AF [ST], n=10) or 6 months (long-term AF [LT], n=7). AF could be cardioverted pharmacologically at the early time point (persistent AF), but not at the later time point (permanent AF). At follow-up, a high-resolution mapping electrode was used to record epicardial conduction patterns in the free walls of the right atrium (RA) and left atrium (LA). A new method for mapping of fibrillation waves was used to describe AF conduction patterns.Wavefronts propagated uniformly during slow pacing in both groups, although conduction velocity was significantly lower in the LT group (LA, 93±14 versus 72±10 cm/s; RA, 94±8 versus 78±8 cm/s). Median AF cycle length (AFCL) was not significantly different between the groups. However, the LT group showed highly complex activation patterns during AF, with an increased number of simultaneously propagating waves (LT group RA, 8.4±3.0 waves/AFCL; LA, 12.8±2.4 waves/AFCL; versus ST group RA, 4.3±2.2 waves/AFCL; LA, 4.5±2.5 waves/AFCL). Fibrillation waves in the LT group showed pronounced dissociation with large activation time differences. The incidence of waves newly appearing within the recording area also was increased in both atria. These alterations in conduction were accompanied by myocyte hypertrophy and increased endomysial fibrosis. Conclusions—Long-term AF in goats leads to dissociated conduction in the atrial free walls that may contribute to increased AF stability.


Circulation | 2006

AVE0118, Blocker of the Transient Outward Current (Ito) and Ultrarapid Delayed Rectifier Current (IKur), Fully Restores Atrial Contractility After Cardioversion of Atrial Fibrillation in the Goat

Sunniva de Haan; Maura Greiser; Erik Harks; Yuri Blaauw; Arne van Hunnik; Sander Verheule; Maurits A. Allessie; Ulrich Schotten

Background— The loss of atrial contractile function after cardioversion of atrial fibrillation (AF) contributes to the thromboembolic risk associated with AF. The newly developed blocker of the transient outward current (Ito) and ultrarapid delayed rectifier current (IKur) AVE0118 prolongs atrial action potential duration and might therefore enhance atrial contractility. We compared the ability of AVE0118 to restore atrial contraction after cardioversion of AF with the efficacy of conventional positive inotropic compounds in the goat model of AF. Methods and Results— Eighteen goats were chronically instrumented with epicardial electrodes, a pressure transducer in the right atrium, and piezoelectric crystals to measure right atrial diameter. Atrial contractility and refractoriness and QT duration were measured before and after 1 week (3 to 8 days) of AF induced by repetitive burst pacing. The measurements were repeated after administration of digoxin (0.02 mg/kg), dobutamine (5 &mgr;g · kg−1 · min−1), the Ca2+ sensitizer EMD57033 (1 mg · kg−1 · min−1), the L-type Ca2+ channel agonist BayY5959 (0.1 mg · kg−1 · min−1), and AVE0118 (0.01 to 0.2 mg · kg−1 · min−1). The effect of AVE0118 on the configuration of atrial monophasic action potentials was determined for comparison. After 1 week of AF, atrial contractility during sinus rhythm or slow atrial pacing was reduced to <10%. Digoxin and dobutamine failed to increase atrial contractility. EMD57033 restored 41% and BayY5959 restored 48% of atrial contractility at baseline. BayY5959 significantly prolonged QT duration by 24.7%. AVE0118 enhanced atrial contraction to 156% of the baseline value. The positive inotropic effect was accompanied by a pronounced prolongation of atrial action potential duration and refractoriness, whereas QT duration remained unchanged. Conclusions— Conventional positive inotropic drugs showed limited effect on atrial contractility after cardioversion of AF or produced QT prolongation. In contrast, the Ito/IKur blocker AVE0118 fully restored atrial contraction without proarrhythmic effects on the ventricle.


Frontiers in Physiology | 2012

Cardiac electrophysiology in mice: a matter of size.

Sven Kaese; Sander Verheule

Over the last decade, mouse models have become a popular instrument for studying cardiac arrhythmias. This review assesses in which respects a mouse heart is a miniature human heart, a suitable model for studying mechanisms of cardiac arrhythmias in humans and in which respects human and murine hearts differ. Section I considers the issue of scaling of mammalian cardiac (electro) physiology to body mass. Then, we summarize differences between mice and humans in cardiac activation (section II) and the currents underlying the action potential in the murine working myocardium (section III). Changes in cardiac electrophysiology in mouse models of heart disease are briefly outlined in section IV, while section V discusses technical considerations pertaining to recording cardiac electrical activity in mice. Finally, section VI offers general considerations on the influence of cardiac size on the mechanisms of tachy-arrhythmias.

Collaboration


Dive into the Sander Verheule's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge