Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandie Menard is active.

Publication


Featured researches published by Sandie Menard.


Nature | 2014

A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

Frédéric Ariey; Benoit Witkowski; Chanaki Amaratunga; Johann Beghain; Anne-Claire Langlois; Nimol Khim; Saorin Kim; Valentine Duru; Christiane Bouchier; Laurence Ma; Pharath Lim; Rithea Leang; Socheat Duong; Sokunthea Sreng; Seila Suon; Char Meng Chuor; Denis Mey Bout; Sandie Menard; William O. Rogers; Blaise Genton; Thierry Fandeur; Olivo Miotto; Pascal Ringwald; Jacques Le Bras; Antoine Berry; Jean-Christophe Barale; Rick M. Fairhurst; Françoise Benoit-Vical; Odile Mercereau-Puijalon; Didier Ménard

Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (‘K13-propeller’) with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.


The New England Journal of Medicine | 2016

A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms.

Didier Ménard; Nimol Khim; Johann Beghain; Ayola A. Adegnika; Mohammad Shafiul-Alam; Olukemi K. Amodu; Ghulam Rahim-Awab; Céline Barnadas; Antoine Berry; Yap Boum; Maria D. Bustos; Jun Cao; Jun-Hu Chen; Louis Collet; Liwang Cui; Garib-Das Thakur; Alioune Dieye; Djibrine Djalle; Monique A. Dorkenoo; Carole E. Eboumbou-Moukoko; Fe-Esperanza-Caridad J. Espino; Thierry Fandeur; Maria-Fatima Ferreira-da-Cruz; Abebe A. Fola; Hans-Peter Fuehrer; Abdillahi M. Hassan; Sócrates Herrera; Bouasy Hongvanthong; Sandrine Houzé; Maman L. Ibrahim

BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).


American Journal of Tropical Medicine and Hygiene | 2011

Imported Plasmodium knowlesi Malaria in a French Tourist Returning from Thailand

Antoine Berry; Xavier Iriart; Nathalie Wilhelm; Alexis Valentin; Sophie Cassaing; Benoit Witkowski; Françoise Benoit-Vical; Sandie Menard; David Olagnier; Judith Fillaux; S Sire; Alain Le Coustumier; Jean-François Magnaval

We report a case of imported Plasmodium knowlesi malaria in a French tourist following a vacation in Thailand. This case shows, first, tourists may contract knowlesi malaria even only staying on the beach and second, the diagnosis remains difficult, even with polymerase chain reaction methods.


Malaria Journal | 2012

Molecular monitoring of plasmodium falciparum drug susceptibility at the time of the introduction of artemisinin-based combination therapy in Yaoundé, Cameroon: Implications for the future

Sandie Menard; Isabelle Morlais; Rachida Tahar; Collins Sayang; Pembe Issamou Mayengue; Xavier Iriart; Françoise Benoit-Vical; Brigitte Lemen; Jean-François Magnaval; Parfait Awono-Ambene; Leonardo K. Basco; Antoine Berry

BackgroundRegular monitoring of the levels of anti-malarial resistance of Plasmodium falciparum is an essential policy to adapt therapy and improve malaria control. This monitoring can be facilitated by using molecular tools, which are easier to implement than the classical determination of the resistance phenotype. In Cameroon, chloroquine (CQ), previously the first-line therapy for uncomplicated malaria was officially withdrawn in 2002 and replaced initially by amodiaquine (AQ) monotherapy. Then, artemisinin-based combination therapy (ACT), notably artesunate-amodiaquine (AS-AQ) or artemether-lumefantrine (AL), was gradually introduced in 2004. This situation raised the question of the evolution of P. falciparum resistance molecular markers in Yaoundé, a highly urbanized Cameroonian city.MethodsThe genotype of pfcrt 72 and 76 and pfmdr1 86 alleles and pfmdr1 copy number were determined using real-time PCR in 447 P. falciparum samples collected between 2005 and 2009.ResultsThis study showed a high prevalence of parasites with mutant pfcrt 76 (83%) and pfmdr1 86 (93%) codons. On the contrary, no mutations in the pfcrt 72 codon and no samples with duplication of the pfmdr1 gene were observed.ConclusionThe high prevalence of mutant pfcrt 76T and pfmdr1 86Y alleles might be due to the choice of alternative drugs (AQ and AS-AQ) known to select such genotypes. Mutant pfcrt 72 codon was not detected despite the prolonged use of AQ either as monotherapy or combined with artesunate. The absence of pfmdr1 multicopies suggests that AL would still remain efficient. The limited use of mefloquine or the predominance of mutant pfmdr1 86Y codon could explain the lack of pfmdr1 amplification. Indeed, this mutant codon is rarely associated with duplication of pfmdr1 gene. In Cameroon, the changes of therapeutic strategies and the simultaneous use of several formulations of ACT or other anti-malarials that are not officially recommended result in a complex selective pressure, rendering the prediction of the evolution of P. falciparum resistance difficult. This public health problem should lead to increased vigilance and regular monitoring.


Antimicrobial Agents and Chemotherapy | 2010

Plasmodium falciparum Isolates with Increased pfmdr1 Copy Number Circulate in West Africa

Benoit Witkowski; Marie-Laure Nicolau; Patrice Njomnang Soh; Xavier Iriart; Sandie Menard; Muriel Alvarez; Bruno Marchou; Jean-François Magnaval; Françoise Benoit-Vical; Antoine Berry

ABSTRACT Amplification of pfmdr1 in Plasmodium falciparum is linked to resistance to aryl-amino-alcohols and in reduced susceptibility to artemisinins. We demonstrate here that duplicated pfmdr1 genotypes circulate in West Africa. The monitoring of this prevalence in Africa appears essential for determining the antimalarial policy and to maintain the efficiency of artemisinin-based combination therapy (ACT) for as long as possible.


Journal of Clinical Microbiology | 2010

pfmdr1 Amplification Associated with Clinical Resistance to Mefloquine in West Africa: Implications for Efficacy of Artemisinin Combination Therapies

Benoit Witkowski; Xavier Iriart; Patrice Njomnang Soh; Sandie Menard; Muriel Alvarez; Veronique Naneix-Laroche; Bruno Marchou; Jean-François Magnaval; Françoise Benoit-Vical; Antoine Berry

ABSTRACT We describe here a clinical failure in the treatment with mefloquine of acute falciparum malaria contracted in Africa and associated with in vitro mefloquine resistance and pfmdr1 copy number amplification. This case raises the question of the presence and the evolution of this genotype in Africa, which is also known to alter the susceptibility to artemisinin combination therapy (ACT).


Medical Mycology | 2013

An extraction method of positive blood cultures for direct identification of Candida species by Vitek MS matrix-assisted laser desorption ionization time of flight mass spectrometry

Rose-Anne Lavergne; Pamela Chauvin; Alexis Valentin; Judith Fillaux; Christine Roques-Malecaze; Sylvie Arnaud; Sandie Menard; Jean-Fran Ç Ois Magnaval; Antoine Berry; Sophie Cassaing; Xavier Iriart

Candida spp. are an important cause of nosocomial bloodstream infections. Currently, complete identification of yeasts with conventional methods takes several days. We report here the first evaluation of an extraction method associated with the Vitek MS matrix-assisted laser desorption ionization time of flight mass spectrometry for direct identification of Candida species from positive blood cultures. We evaluated this protocol with blood cultures that were inoculated with reference and routine isolates (eight reference strains, 30 patients isolates and six mixed cultures containing two strains of different Candida species), or from patients with candidemia (28 isolates). This method performed extremely well (97% correct identification) with blood cultures of single Candida spp. and significantly reduced the time of diagnosis. Nevertheless, subculture remains indispensable to test fungal resistance and to detect mixed infections.


Emerging Infectious Diseases | 2015

Induction of Multidrug Tolerance in Plasmodium falciparum by Extended Artemisinin Pressure.

Sandie Menard; Tanila Ben Haddou; Arba Pramundita Ramadani; Frédéric Ariey; Xavier Iriart; Johann Beghain; Christiane Bouchier; Benoit Witkowski; Antoine Berry; Odile Mercereau-Puijalon; Françoise Benoit-Vical

Tolerance is not detected by current assays and represents a major threat to antimalarial drug policy.


Parasitology | 2015

Molecular characterization of Babesia and Cytauxzoon species in wild South-African meerkats

Sarah Leclaire; Sandie Menard; Antoine Berry

Piroplasms, including Babesia, Cytauxzoon and Theileria species, frequently infect domestic and wild mammals. At present, there is no information on the occurrence and molecular identity of these tick-borne blood parasites in the meerkat, one of South Africas most endearing wildlife celebrities. Meerkats live in territorial groups, which may occur on ranchland in close proximity to humans, pets and livestock. Blood collected from 46 healthy meerkats living in the South-African Kalahari desert was screened by microscopy and molecular methods, using PCR and DNA sequencing of 18S rRNA and ITS1 genes. We found that meerkats were infected by 2 species: one species related to Babesia sp. and one species related to Cytauxzoon sp. Ninety one percent of the meerkats were infected by the Cytauxzoon and/or the Babesia species. Co-infection occurred in 46% of meerkats. The pathogenicity and vectors of these two piroplasm species remains to be determined.


Journal of Antimicrobial Chemotherapy | 2015

Prevalence of Plasmodium falciparum parasites resistant to sulfadoxine/pyrimethamine in pregnant women in Yaoundé, Cameroon: emergence of highly resistant pfdhfr/pfdhps alleles

Pamela Chauvin; Sandie Menard; Xavier Iriart; Sandrine E. Nsango; Majoline T. Tchioffo; Luc Abate; Parfait Awono-Ambene; Isabelle Morlais; Antoine Berry

OBJECTIVES To determine, 6 years after the adoption of intermittent preventive treatment of pregnant women with sulfadoxine/pyrimethamine (IPTp-SP) in Cameroon, (i) the polymorphism and prevalence of Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) gene mutations associated with sulfadoxine/pyrimethamine resistance and (ii) the consequences of sulfadoxine/pyrimethamine use in the selection of pfdhfr/pfdhps alleles. METHODS pfdhfr and pfdhps genes from P. falciparum isolates collected in Yaoundé (Cameroon) from pregnant women with symptomatic malaria before taking IPTp-SP [SP- group (control) (n = 51)] or afterwards [SP+ group (n = 49)] were sequenced. RESULTS The pfdhfr N51I, C59R, S108N triple mutant had a prevalence close to 100% (96/100) and no mutations at codons 50 and 164 were detected in either of the groups. The most frequent pfdhps mutation was A437G with a prevalence of 76.5% (39/51) in the SP- group, which was significantly higher in pregnant women who took sulfadoxine/pyrimethamine [95.9% (47/49)] (P = 0.012). Our study confirmed the presence of the pfdhps K540E mutation in Cameroon, but it remained rare. The prevalence of pfdhps A581G and A613S mutations had increased [5.9% (3/51) and 11.8% (6/51) in the control group, respectively] since the last studies in 2005. Surprisingly, the new pfdhps I431V mutation was detected, at a prevalence of 9.8% (5/51), and was found to be associated with other pfdhfr/pfdhps alleles to form an octuple N51I, C59R, S108N/I431V, S436A, A437G, A581G, A613S mutant. CONCLUSIONS Significant changes were found in pfdhps polymorphism. In particular, we observed several parasites carrying eight mutations in pfdhfr/pfdhps genes, which are very susceptible to having a high level of resistance to sulfadoxine/pyrimethamine.

Collaboration


Dive into the Sandie Menard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Morlais

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge