Sandie Munier
Paris Diderot University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandie Munier.
The EMBO Journal | 2007
Nathalie Arhel; Sylvie Souquere-Besse; Sandie Munier; Philippe Souque; Stéphanie Guadagnini; Sandra A Rutherford; Marie-Christine Prévost; Terence D Allen; Pierre Charneau
The HIV‐1 central DNA Flap acts as a cis‐acting determinant of HIV‐1 genome nuclear import. Indeed, DNA‐Flap re‐insertion within lentiviral‐derived gene transfer vectors strongly stimulates gene transfer efficiencies. In this study, we sought to understand the mechanisms by which the central DNA Flap mediates HIV‐1 nuclear import. Here, we show that reverse transcription (RT°) occurs within an intact capsid (CA) shell, independently of the routing process towards the nuclear membrane, and that uncoating is not an immediate post‐fusion event, but rather occurs at the nuclear pore upon RT° completion. We provide the first observation with ultrastructural resolution of intact intracellular HIV‐1 CA shells by scanning electron microscopy. In the absence of central DNA Flap formation, uncoating is impaired and linear DNA remains trapped within an integral CA shell precluding translocation through the nuclear pore. These data show that DNA Flap formation, the very last event of HIV‐1 RT°, acts as a viral promoting element for the uncoating of HIV‐1 at the nuclear pore.
Journal of Virology | 2010
Sandie Munier; Thibaut Larcher; F. Cormier-Aline; Denis Soubieux; B. Su; L. Guigand; B. Labrosse; Y. Cherel; Pascale Quéré; Daniel Marc; Nadia Naffakh
ABSTRACT A deletion of about 20 amino acids in the stalk of the neuraminidase (NA) is frequently detected upon transmission of influenza A viruses from waterfowl to domestic poultry. Using reverse genetics, a recombinant virus derived from a wild duck influenza virus isolate, A/Mallard/Marquenterre/Z237/83 (MZ), and an NA stalk deletion variant (MZ-delNA) were produced. Compared to the wild type, the MZ-delNA virus showed a moderate growth advantage on avian cultured cells. In 4-week-old chickens inoculated intratracheally with the MZ-delNA virus, viral replication in the lungs, liver, and kidneys was enhanced and interstitial pneumonia lesions were more severe than with the wild-type virus. The MZ-delNA-inoculated chickens showed significantly increased levels of mRNAs encoding interleukin-6 (IL-6), transforming growth factor-β4 (TGF-β4), and CCL5 in the lungs and a higher frequency of apoptotic cells in the liver than did their MZ-inoculated counterparts. Molecular mechanisms possibly underlying the growth advantage of the MZ-delNA virus were explored. The measured enzymatic activities toward a small substrate were similar for the wild-type and deleted NA, but the MZ-delNA virus eluted from chicken erythrocytes at reduced rates. Pseudoviral particles expressing the MZ hemagglutinin in combination with the MZ-NA or MZ-delNA protein were produced from avian cultured cells with similar efficiencies, suggesting that the deletion in the NA stalk does not enhance the release of progeny virions and probably affects an earlier step of the viral cycle. Overall, our data indicate that a shortened NA stalk is a strong determinant of adaptation and virulence of waterfowl influenza viruses in chickens.
Journal of Virology | 2009
Anne-Sophie Beignon; Karine Mollier; Christelle Liard; Frédéric Coutant; Sandie Munier; Julie Rivière; Philippe Souque; Pierre Charneau
ABSTRACT AIDS vaccination has a pressing need for more potent vaccination vectors capable of eliciting strong, diversified, and long-lasting cellular immune responses against human immunodeficiency virus (HIV). Lentiviral vectors have demonstrated efficiency not only as gene delivery vehicles for gene therapy applications but also as vaccination tools. This is likely due to their ability to transduce nondividing cells, including dendritic cells, enabling sustained endogenous antigen presentation and thus the induction of high proportions of specific cytotoxic T cells and long-lasting memory T cells. We show in a first proof-of-concept pilot study that a prime/boost vaccination strategy using lentiviral vectors pseudotyped with a glycoprotein G from two non-cross-reactive vesicular stomatitis virus serotypes elicited robust and broad cellular immune responses against the vector-encoded antigen, simian immunodeficiency virus (SIV) GAG, in cynomolgus macaques. Vaccination conferred strong protection against a massive intrarectal challenge with SIVmac251, as evidenced both by the reduction of viremia at the peak of acute infection (a mean of over 2 log10 fold reduction) and by the full preservation of the CD28+ CD95+ memory CD4+ T cells during the acute phase, a strong correlate of protection against pathogenesis. Although vaccinees continued to display lower viremia than control macaques during the early chronic phase, these differences were not statistically significant by day 50 postchallenge. A not-optimized SIV GAG antigen was chosen to show the strong potential of the lentiviral vector system for vaccination. Given that a stronger protection can be anticipated from a modern HIV-1 antigen design, gene transfer vectors derived from HIV-1 appear as promising candidates for vaccination against HIV-1 infection.
Journal of Virology | 2006
Nathalie Arhel; Sandie Munier; Philippe Souque; Karine Mollier; Pierre Charneau
ABSTRACT We have previously established, using human immunodeficiency virus type 1 (HIV-1) strain LAI, that the HIV-1 central DNA Flap acts as a cis determinant of viral genome nuclear import. Although the impact of the DNA Flap on nuclear import has already found numerous independent confirmations in the context of lentivirus vectors, it has been claimed that it may be nonessential for infectious virus strains LAI, YU-2 (J. D. Dvorin et al., J. Virol. 76:12087-12096, 2002), HXB2, and NL4-3 (A. Limon et al., J. Virol. 76:12078-12086, 2002). We conducted a detailed analysis of virus infectivity using the provirus clones provided by the authors and analogous target cells. In contrast to published data, our results show that all cPPT mutant viruses exhibit reduced infectivity corresponding to a nuclear import defect irrespective of the viral genetic background or target cell.
Antiviral Therapy | 2011
Marie-Anne Rameix-Welti; Sandie Munier; Sebastien Le Gal; Frédérique Cuvelier; Fabrice Agou; Vincent Enouf; Nadia Naffakh; Sylvie van der Werf
BACKGROUND During the 2007-2008 season, A(H1N1) viruses naturally resistant to oseltamivir due to an H275Y substitution in the neuraminidase emerged and spread in the human population. The neuraminidase of 2007-2008 A(H1N1) viruses has an increased affinity for sialic acids as compared with the N1 of previously circulating viruses. METHODS Using site-directed mutagenesis analysis and an enzymatic assay on cells transiently expressing the viral neuraminidase, the amino acid changes that could account for the particular enzymatic properties of the neuraminidase of 2007-2008 A(H1N1) viruses were explored. The affinity for the substrate (K(m)) and the inhibition constants for inhibitors (K(i)) were determined for wild-type and mutated neuraminidases. Reverse genetics was used to produce 6:2 reassortant viruses expressing haemagglutinin and neuraminidase derived from A(H1N1) viruses of the 2007-2008 season or from a previously circulating H1N1 virus, in an A/WSN/33 background. RESULTS The D344N substitution characteristic of the N1 of 2007-2008 A(H1N1) viruses was identified as a major determinant of its increased affinity for sialic acids. According to the viral plaque phenotype of the 6:2 reassortant viruses, the H275Y mutation was deleterious when the surface glycoproteins were derived from the H1N1 virus isolated in 2004, but not when they were derived from A(H1N1) viruses of the 2007-2008 season. CONCLUSIONS The D344N substitution, by modifying the enzymatic property of the N1, may have favoured the emergence and spread of viruses naturally resistant to oseltamivir.
Molecular & Cellular Proteomics | 2013
Sandie Munier; Thomas Rolland; Cédric Diot; Yves Jacob; Nadia Naffakh
A precise mapping of pathogen–host interactions is essential for comprehensive understanding of the processes of infection and pathogenesis. The most frequently used techniques for interactomics are the yeast two-hybrid binary methodologies, which do not recapitulate the pathogen life cycle, and the tandem affinity purification mass spectrometry co-complex methodologies, which cannot distinguish direct from indirect interactions. New technologies are thus needed to improve the mapping of pathogen–host interactions. In the current study, we detected binary interactions between influenza A virus polymerase and host proteins during the course of an actual viral infection, using a new strategy based on trans-complementation of the Gluc1 and Gluc2 fragments of Gaussia princeps luciferase. Infectious recombinant influenza viruses that encode a Gluc1-tagged polymerase subunit were engineered to infect cultured cells transiently expressing a selected set of Gluc2-tagged cellular proteins involved in nucleocytoplasmic trafficking pathways. A random set and a literature-curated set of Gluc2-tagged cellular proteins were tested in parallel. Our assay allowed the sensitive and accurate recovery of previously described interactions, and it revealed 30% of positive, novel viral–host protein–protein interactions within the exploratory set. In addition to cellular proteins involved in the nuclear import pathway, components of the nuclear pore complex such as NUP62 and mRNA export factors such as NXF1, RMB15B, and DDX19B were identified for the first time as interactors of the viral polymerase. Gene silencing experiments further showed that NUP62 is required for efficient viral replication. Our findings give new insights regarding the subversion of host nucleocytoplasmic trafficking pathways by influenza A viruses. They also demonstrate the potential of our infectious protein complementation assay for high-throughput exploration of influenza virus interactomics in infected cells. With more infectious reverse genetics systems becoming available, this strategy should be widely applicable to numerous pathogens.
Journal of Biological Chemistry | 2015
Juliette Fernandez; Débora M. Portilho; Anne Danckaert; Sandie Munier; Andreas Becker; Pascal Roux; Anaba Zambo; Spencer Shorte; Yves Jacob; Pierre-Olivier Vidalain; Pierre Charneau; François Clavel; Nathalie Arhel
Background: During infection, HIV uses the host cytoskeleton to traffic across the cytoplasm to the nucleus where it integrates its genome. Results: Microtubule-associated proteins (MAP1A and MAP1S) promote HIV trafficking to the nucleus. Conclusion: MAP1 proteins help tether viral capsids to microtubules. Significance: This is the first description of HIV-microtubule interactions that contribute to HIV trafficking to the nucleus. After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.
PLOS Pathogens | 2014
Guillaume Fournier; Chiayn Chiang; Sandie Munier; Andru Tomoiu; Caroline Demeret; Pierre-Olivier Vidalain; Yves Jacob; Nadia Naffakh
Influenza A viruses are major pathogens in humans and in animals, whose genome consists of eight single-stranded RNA segments of negative polarity. Viral mRNAs are synthesized by the viral RNA-dependent RNA polymerase in the nucleus of infected cells, in close association with the cellular transcriptional machinery. Two proteins essential for viral multiplication, the exportin NS2/NEP and the ion channel protein M2, are produced by splicing of the NS1 and M1 mRNAs, respectively. Here we identify two human spliceosomal factors, RED and SMU1, that control the expression of NS2/NEP and are required for efficient viral multiplication. We provide several lines of evidence that in infected cells, the hetero-trimeric viral polymerase recruits a complex formed by RED and SMU1 through interaction with its PB2 and PB1 subunits. We demonstrate that the splicing of the NS1 viral mRNA is specifically affected in cells depleted of RED or SMU1, leading to a decreased production of the spliced mRNA species NS2, and to a reduced NS2/NS1 protein ratio. In agreement with the exportin function of NS2, these defects impair the transport of newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm, and strongly reduce the production of infectious influenza virions. Overall, our results unravel a new mechanism of viral subversion of the cellular splicing machinery, by establishing that the human splicing factors RED and SMU1 act jointly as key regulators of influenza virus gene expression. In addition, our data point to a central role of the viral RNA polymerase in coupling transcription and alternative splicing of the viral mRNAs.
PLOS ONE | 2013
Marion Desdouits; Sandie Munier; Marie-Christine Prévost; Patricia Jeannin; Gillian Butler-Browne; Simona Ozden; Antoine Gessain; Sylvie van der Werf; Nadia Naffakh; Pierre-Emmanuel Ceccaldi
Besides the classical respiratory and systemic symptoms, unusual complications of influenza A infection in humans involve the skeletal muscles. Numerous cases of acute myopathy and/or rhabdomyolysis have been reported, particularly following the outbreak of pandemic influenza A(H1N1) in 2009. The pathogenesis of these influenza-associated myopathies (IAM) remains unkown, although the direct infection of muscle cells is suspected. Here, we studied the susceptibility of cultured human primary muscle cells to a 2009 pandemic and a 2008 seasonal influenza A(H1N1) isolate. Using cells from different donors, we found that differentiated muscle cells (i. e. myotubes) were highly susceptible to infection by both influenza A(H1N1) isolates, whereas undifferentiated cells (i. e. myoblasts) were partially resistant. The receptors for influenza viruses, α2-6 and α2-3 linked sialic acids, were detected on the surface of myotubes and myoblasts. Time line of viral nucleoprotein (NP) expression and nuclear export showed that the first steps of the viral replication cycle could take place in muscle cells. Infected myotubes and myoblasts exhibited budding virions and nuclear inclusions as observed by transmission electron microscopy and correlative light and electron microscopy. Myotubes, but not myoblasts, yielded infectious virus progeny that could further infect naive muscle cells after proteolytic treatment. Infection led to a cytopathic effect with the lysis of muscle cells, as characterized by the release of lactate dehydrogenase. The secretion of proinflammatory cytokines by muscle cells was not affected following infection. Our results are compatible with the hypothesis of a direct muscle infection causing rhabdomyolysis in IAM patients.
Pathologie Biologie | 2010
Sandie Munier; D. Moisy; D. Marc; Nadia Naffakh
The emergence in 2009 of a novel A(H1N1)v influenza virus of swine origin and the regular occurrence since 2003 of human cases of infection with A(H5N1) avian influenza viruses underline the zoonotic and pandemic potential of type A influenza viruses. Influenza viruses from the wild aquatic birds reservoir usually do not replicate efficiently in humans. Domestic poultry and swine can act as intermediate hosts for the acquisition of determinants that increase the potential of transmission and adaptation to humans, through the accumulation of mutations or by genetic reassortment. The rapid evolution of influenza viruses following interspecies transmission probably results from the selection of genetic variations that favor optimal interactions between viral proteins and cellular factors, leading to an increased multiplication potential and a better escape to the host antiviral response. Whereas influenza viruses usually cause asymptomatic infections in wild aquatic birds, they may be highly pathogenic in other species. Molecular determinants of host-specificity and pathogenesis have been identified in most viral genes, notably in genes that encode viral surface glycoproteins, proteins involved in the viral genome replication, and proteins that counteract the host immune response. However, our knowledge of these numerous and interdependant determinants remains incomplete, and the molecular mechanisms involved are still to be understood.