Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandip Patel is active.

Publication


Featured researches published by Sandip Patel.


Cell | 2002

NAADP Mobilizes Ca2+ from Reserve Granules, Lysosome-Related Organelles, in Sea Urchin Eggs

Grant C. Churchill; Yuhei Okada; Justyn M. Thomas; Armando A. Genazzani; Sandip Patel; Antony Galione

Abstract Nicotinic acid adenine dinucleotide phosphate (NAADP) mobilizes Ca 2+ in many cells and species. Unlike other Ca 2+ -mobilizing messengers, NAADP mobilizes Ca 2+ from an unknown store that is not the endoplasmic reticulum, the store traditionally associated with messenger-mediated Ca 2+ signaling. Here, we demonstrate the presence of a Ca 2+ store in sea urchin eggs mobilized by NAADP that is dependent on a proton gradient maintained by an ATP-dependent vacuolar-type proton pump. Moreover, we provide pharmacological and biochemical evidence that this Ca 2+ store is the reserve granule, the functional equivalent of a lysosome in the sea urchin egg. These findings represent an unsuspected mechanism for messenger-mediated Ca 2+ release from lysosome-related organelles.


Journal of Cell Biology | 2009

Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling.

Eugen Brailoiu; Dev Churamani; Xinjiang Cai; Michael G. Schrlau; G. Cristina Brailoiu; Xin Gao; Robert Hooper; Michael J. Boulware; Nae J. Dun; Jonathan S. Marchant; Sandip Patel

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a widespread and potent calcium-mobilizing messenger that is highly unusual in activating calcium channels located on acidic stores. However, the molecular identity of the target protein is unclear. In this study, we show that the previously uncharacterized human two-pore channels (TPC1 and TPC2) are endolysosomal proteins, that NAADP-mediated calcium signals are enhanced by overexpression of TPC1 and attenuated after knockdown of TPC1, and that mutation of a single highly conserved residue within a putative pore region abrogated calcium release by NAADP. Thus, TPC1 is critical for NAADP action and is likely the long sought after target channel for NAADP.


Human Molecular Genetics | 2012

Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP

Patricia Gómez-Suaga; Berta Luzón-Toro; Dev Churamani; Ling-ling Zhang; Duncan Bloor-Young; Sandip Patel; Philip G. Woodman; Grant C. Churchill; Sabine Hilfiker

Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause late-onset Parkinson’s disease, but its physiological function has remained largely unknown. Here we report that LRRK2 activates a calcium-dependent protein kinase kinase-β (CaMKK-β)/adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway which is followed by a persistent increase in autophagosome formation. Simultaneously, LRKR2 overexpression increases the levels of the autophagy receptor p62 in a protein synthesis-dependent manner, and decreases the number of acidic lysosomes. The LRRK2-mediated effects result in increased sensitivity of cells to stressors associated with abnormal protein degradation. These effects can be mimicked by the lysosomal Ca2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and can be reverted by an NAADP receptor antagonist or expression of dominant-negative receptor constructs. Collectively, our data indicate a molecular mechanism for LRRK2 deregulation of autophagy and reveal previously unidentified therapeutic targets.


Current Biology | 2003

Sperm Deliver a New Second Messenger: NAADP

Grant C. Churchill; John S. O'Neill; Roser Masgrau; Sandip Patel; Justyn M. Thomas; Armando A. Genazzani; Antony Galione

NAADP is a highly potent mobilizer of Ca(2+), which in turn triggers Ca(2+)-induced Ca(2+) release pathways in a wide range of species. Nevertheless, NAADP is not presently classified as a second messenger because it has not been shown to increase in response to a physiological stimulus. We now report a dramatic increase in NAADP during sea urchin egg fertilization that was largely due to production in sperm upon contacting egg jelly. The NAADP bolus plays a physiological role upon delivery to the egg based on its ability to induce a cortical flash, a depolarization-induced activation of L-type Ca(2+) channels. Moreover, the sperm-induced cortical flash was eliminated in eggs desensitized to NAADP. We conclude that an NAADP increase plays a physiologically relevant role during fertilization and provides the first conclusive demonstration that NAADP is a genuine second messenger.


Current Biology | 2005

Role of NAADP and cADPR in the Induction and Maintenance of Agonist-Evoked Ca2+ Spiking in Mouse Pancreatic Acinar Cells

Michiko Yamasaki; Justyn M. Thomas; Grant C. Churchill; Clive Garnham; Alexander M. Lewis; José-Manuel Cancela; Sandip Patel; Antony Galione

Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic adenosine diphosphate ribose (cADPR) were first demonstrated to mobilize Ca2+ in sea urchin eggs. In the absence of direct measurements of these messengers, pharmacological studies alone have implicated these molecules as intracellular second messengers for specific cell surface receptor agonists. We now report that in mouse pancreatic acinar cells, cholecystokinin, but not acetylcholine, evokes rapid and transient increases in NAADP levels in a concentration-dependent manner. In contrast, both cholecystokinin and acetylcholine-mediated production of cADPR followed a very different time course. The rapid and transient production of NAADP evoked by cholecystokinin precedes the onset of the Ca2+ signal and is consistent with a role for NAADP in the initiation of the Ca2+ response. Continued agonist-evoked Ca2+ spiking is maintained by prolonged elevations of cADPR levels through sensitization of Ca2+ -induced Ca2+ -release channels. This study represents the first direct comparison of NAADP and cADPR measurements, and the profound differences observed in their time courses provide evidence in support of distinct roles of these Ca2+ -mobilizing messengers in shaping specific Ca2+ signals during agonist stimulation.


Journal of Biological Chemistry | 2010

An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals

Eugen Brailoiu; Taufiq Rahman; Dev Churamani; David L. Prole; G. Cristina Brailoiu; Robert Hooper; Colin W. Taylor; Sandip Patel

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a ubiquitous messenger proposed to stimulate Ca2+ release from acidic organelles via two-pore channels (TPCs). It has been difficult to resolve this trigger event from its amplification via endoplasmic reticulum Ca2+ stores, fuelling speculation that archetypal intracellular Ca2+ channels are the primary targets of NAADP. Here, we redirect TPC2 from lysosomes to the plasma membrane and show that NAADP evokes Ca2+ influx independent of ryanodine receptors and that it activates a Ca2+-permeable channel whose conductance is reduced by mutation of a residue within a putative pore. We therefore uncouple TPC2 from amplification pathways and prove that it is a pore-forming subunit of an NAADP-gated Ca2+ channel.


Journal of Biological Chemistry | 2012

Photoaffinity labeling of nicotinic acid adenine dinucleotide phosphate (NAADP) targets in mammalian cells

Yaping Lin-Moshier; Timothy F. Walseth; Dev Churamani; Sean M. Davidson; James T. Slama; Robert Hooper; Eugene Brailoiu; Sandip Patel; Jonathan S. Marchant

Background: Nicotinic acid adenine dinucleotide phosphate (NAADP) activates two-pore channels (TPCs) to release Ca2+ from intracellular acidic Ca2+ stores. Results: A photoactivatable probe based on NAADP labels proteins distinct from TPCs. Conclusion: NAADP may bind to an accessory protein within a larger TPC complex. Significance: First evidence that TPCs act as NAADP-activated Ca2+ release channels, but not NAADP receptors. Nicotinic acid adenine dinucleotide phosphate (NAADP) is an agonist-generated second messenger that releases Ca2+ from intracellular acidic Ca2+ stores. Recent evidence has identified the two-pore channels (TPCs) within the endolysosomal system as NAADP-regulated Ca2+ channels that release organellar Ca2+ in response to NAADP. However, little is known about the mechanism coupling NAADP binding to calcium release. To identify the NAADP binding site, we employed a photoaffinity labeling method using a radioactive photoprobe based on 5-azido-NAADP ([32P-5N3]NAADP) that exhibits high affinity binding to NAADP receptors. In several systems that are widely used for studying NAADP-evoked Ca2+ signaling, including sea urchin eggs, human cell lines (HEK293, SKBR3), and mouse pancreas, 5N3-NAADP selectively labeled low molecular weight sites that exhibited the diagnostic pharmacology of NAADP-sensitive Ca2+ release. Surprisingly, we were unable to demonstrate labeling of endogenous, or overexpressed, TPCs. Furthermore, labeling of high affinity NAADP binding sites was preserved in pancreatic samples from TPC1 and TPC2 knock-out mice. These photolabeling data suggest that an accessory component within a larger TPC complex is responsible for binding NAADP that is unique from the core channel itself. This observation necessitates critical evaluation of current models of NAADP-triggered activation of the TPC family.


The EMBO Journal | 2014

Convergent regulation of the lysosomal two‐pore channel‐2 by Mg2+, NAADP, PI(3,5)P2 and multiple protein kinases

Archana Jha; Malini Ahuja; Sandip Patel; Eugen Brailoiu; Shmuel Muallem

Lysosomal Ca2+ homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca2+ signaling was the discovery of the two‐pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg2+ and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg2+ specifically inhibited TPC2 outward current, whereas lysosomal Mg2+ partially inhibited both outward and inward currents in a lysosomal lumen pH‐dependent manner. Under controlled Mg2+, TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP‐mediated Ca2+ release in intact cells is regulated by Mg2+, PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP‐mediated Ca2+ signaling and link this pathway to Mg2+ homeostasis and MAP kinases, pointing to roles for lysosomal Ca2+ in cell growth, inflammation and cancer.


Journal of Cell Science | 2013

Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals.

Bethan S. Kilpatrick; Emily R. Eden; A. H. V. Schapira; Clare E. Futter; Sandip Patel

Summary Accumulating evidence implicates acidic organelles of the endolysosomal system as mobilisable stores of Ca2+ but their relationship to the better-characterised endoplasmic reticulum (ER) Ca2+ store remains unclear. Here we show that rapid osmotic permeabilisation of lysosomes evokes prolonged, spatiotemporally complex Ca2+ signals in primary cultured human fibroblasts. These Ca2+ signals comprised an initial response that correlated with lysosomal disruption and secondary long-lasting spatially heterogeneous Ca2+ oscillations that required ER-localised inositol trisphosphate receptors. Electron microscopy identified extensive membrane contact sites between lysosomes and the ER. Mobilisation of lysosomal Ca2+ stores is thus sufficient to evoke ER-dependent Ca2+ release probably through lysosome–ER membrane contact sites, and akin to the proposed mechanism of action of the Ca2+ mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP). Our data identify functional and physical association of discrete Ca2+ stores important for the genesis of Ca2+ signal complexity.


Journal of Biological Chemistry | 2006

Messenger-specific Role for Nicotinic Acid Adenine Dinucleotide Phosphate in Neuronal Differentiation

Eugen Brailoiu; Dev Churamani; Vinita Pandey; G. Cristina Brailoiu; Florin Tuluc; Sandip Patel; Nae J. Dun

Cells possess several Ca2+-mobilizing messengers, which couple stimulation at the cell surface by a multitude of extracellular cues to the regulation of intracellular Ca2+-sensitive targets. Recent studies suggest that agonists differentially select from this molecular palette to generate their characteristic Ca2+ signals but it is still unclear whether different messengers mediate different functions or whether they act in a redundant fashion. In this study, we compared the effects of nicotinic acid adenine dinucleotide phosphate (NAADP), a novel Ca2+-mobilizing messenger, with that of the prototypical messenger inositol trisphosphate on cytosolic Ca2+ levels and differentiation status of PC12 cells. We demonstrate that liposomal delivery of NAADP mediated release of Ca2+ from acidic Ca2+ stores and that this stimulus was sufficient to drive differentiation of the cells to a neuronal-like phenotype. In sharp contrast, cell fate was unaffected by more transient Ca2+ signals generated by inositol trisphosphate-evoked release of endoplasmic reticulum Ca2+ stores. Our data establish for the first time (i) the presence of novel NAADP-sensitive Ca2+ stores in PC12 cells, (ii) a role for NAADP in differentiation, and (iii) that Ca2+-dependent function can be messenger-specific. Thus, differential recruitment of intracellular Ca2+-mobilizing messengers and their target Ca2+ stores may represent a robust means of maintaining stimulus fidelity in the control of Ca2+-dependent cell function.

Collaboration


Dive into the Sandip Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dev Churamani

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge