Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sándor Gonda is active.

Publication


Featured researches published by Sándor Gonda.


Toxicon | 2009

Cylindrospermopsin induces alterations of root histology and microtubule organization in common reed (Phragmites australis) plantlets cultured in vitro.

Dániel Beyer; Gyula Surányi; Gábor Vasas; János Roszik; Ferenc Erdodi; Márta M-Hamvas; István Bácsi; Róbert Bátori; Zoltán Serfozo; Zsuzsa M. Szigeti; György Vereb; Zita Demeter; Sándor Gonda; Csaba Máthé

We aimed to study the histological and cytological alterations induced by cylindrospermopsin (CYN), a protein synthesis inhibitory cyanotoxin in roots of common reed (Phragmites australis). Reed is an ecologically important emergent aquatic macrophyte, a model for studying cyanotoxin effects. We analyzed the histology and cytology of reed roots originated from tissue cultures and treated with 0.5-40 microg ml(-1) (1.2-96.4 microM) CYN. The cyanotoxin decreased root elongation at significantly lower concentrations than the elongation of shoots. As general stress responses of plants to phytotoxins, CYN increased root number and induced the formation of a callus-like tissue and necrosis in root cortex. Callus-like root cortex consisted of radially swollen cells that correlated with the reorientation of microtubules (MTs) and the decrease of MT density in the elongation zone. Concomitantly, the cyanotoxin did not decrease, rather it increased the amount of beta-tubulin in reed plantlets. CYN caused the formation of double preprophase bands; the disruption of mitotic spindles led to incomplete sister chromatid separation and disrupted phragmoplasts in root tip meristems. This work shows that CYN alters reed growth and anatomy through the alteration of MT organization.


Aquatic Toxicology | 2009

Microcystin-LR induces abnormal root development by altering microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets

Csaba Máthé; Dániel Beyer; Ferenc Erdodi; Zoltán Serfozo; Lóránt Székvölgyi; Gábor Vasas; Márta M-Hamvas; Katalin Jámbrik; Sándor Gonda; Andrea Kiss; Zsuzsa M. Szigeti; Gyula Surányi

Microcystin-LR (MC-LR) is a heptapeptide cyanotoxin, known to be a potent inhibitor of type 1 and 2A protein phosphatases in eukaryotes. Our aim was to investigate the effect of MC-LR on the organization of microtubules and mitotic chromatin in relation to its possible effects on cell and whole organ morphology in roots of common reed (Phragmites australis). P. australis is a widespread freshwater and brackish water aquatic macrophyte, frequently exposed to phytotoxins in eutrophic waters. Reed plantlets regenerated from embryogenic calli were treated with 0.001-40 microg ml(-1) (0.001-40.2 microM) MC-LR for 2-20 days. At 0.5 microg ml(-1) MC-LR and at higher cyanotoxin concentrations, the inhibition of protein phosphatase activity by MC-LR induced alterations in reed root growth and morphology, including abnormal lateral root development and the radial swelling of cells in the elongation zone of primary and lateral roots. Both short-term (2-5 days) and long-term (10-20 days) of cyanotoxin treatment induced microtubule disruption in meristems and in the elongation and differentiation zones. Microtubule disruption was accompanied by root cell shape alteration. At concentrations of 0.5-5 microg ml(-1), MC-LR increased mitotic index at long-term exposure and induced the increase of the percentage of meristematic cells in prophase as well as telophase and cytokinesis of late mitosis. High cyanotoxin concentrations (10-40 microg ml(-1)) inhibited mitosis at as short as 2 days of exposure. The alteration of microtubule organization was observed in mitotic cells at all exposure periods studied, at cyanotoxin concentrations of 0.5-40 microg ml(-1). MC-LR induced spindle anomalies at the metaphase-anaphase transition, the formation of asymmetric anaphase spindles and abnormal sister chromatid separation. This paper reports for the first time that MC-LR induces cytoskeletal changes that lead to alterations of root architecture and development in common reed and generally, in plant cells. The MC-LR induced alterations in cells of an ecologically important aquatic macrophyte can reveal the importance of the effects of a cyanobacterial toxin in aquatic ecosystems.


Toxins | 2013

Appearance of Planktothrix rubescens Bloom with [D-Asp3, Mdha7]MC–RR in Gravel Pit Pond of a Shallow Lake-Dominated Area

Gábor Vasas; Oszkár Farkas; Gábor Borics; Tamás Felföldi; Gábor Sramkó; Gyula Batta; István Bácsi; Sándor Gonda

Blooms of toxic cyanobacteria are well-known phenomena in many regions of the world. Microcystin (MC), the most frequent cyanobacterial toxin, is produced by entirely different cyanobacteria, including unicellular, multicellular filamentous, heterocytic, and non-heterocytic bloom-forming species. Planktothrix is one of the most important MC-producing genera in temperate lakes. The reddish color of cyanobacterial blooms viewed in a gravel pit pond with the appearance of a dense 3 cm thick layer (biovolume: 28.4 mm3 L−1) was an unexpected observation in the shallow lake-dominated alluvial region of the Carpathian Basin. [d-Asp3, Mdha7]MC–RR was identified from the blooms sample by MALDI-TOF and NMR. Concentrations of [d-Asp3, Mdha7]MC–RR were measured by capillary electrophoresis to compare the microcystin content of the field samples and the isolated, laboratory-maintained P. rubescens strain. In analyzing the MC gene cluster of the isolated P. rubescens strain, a deletion in the spacer region between mcyE and mcyG and an insertion were located in the spacer region between mcyT and mcyD. The insertion elements were sequenced and partly identified. Although some invasive tropical cyanobacterial species have been given a great deal of attention in many recent studies, our results draw attention to the spread of the alpine organism P. rubescens as a MC-producing, bloom-forming species.


Phytochemical Analysis | 2012

Effect of High Relative Humidity on Dried Plantago lanceolata L. Leaves during Long-term Storage: Effects on Chemical Composition, Colour and Microbiological Quality

Sándor Gonda; László Tóth; Gyöngyi Gyémánt; Mihály Braun; Tamás Emri; Gábor Vasas

INTRODUCTION Modern phytotherapy and quality assurance requires stability data on bioactive metabolites to identify and minimise decomposing factors during processing and storage. A compounds stability in a complex matrix can be different from the stability of the purified compound. OBJECTIVE To test the stability of iridoids and acteoside and quantify changes in colour and microbiological quality in a common herbal tea, dried P. lanceolata leaves during exposure to high-humidity air. To test the contribution of fungi to metabolite decomposition. METHODOLOGY Dried P. lanceolata leaves were exposed to atmospheres of different relative humidity (75, 45 and 0%) for 24 weeks. Changes in aucubin and catalpol concentration were determined by CE-MEKC, and those in acteoside on TLC. Colour and chlorophyll-like pigments were measured by different spectrophotometric methods. The number of fungi was monitored; 10 strains were isolated from the plant drug, and their ability to decompose the analytes of interest was tested. RESULTS During incubation at 75% relative humidity (RH), aucubin, catalpol and acteoside concentrations decreased by 95.7, 97.0 and 70.5%, respectively. Strong shifts were detected in CIELAB parameters a* and b* (browning) as a result of conversion of chlorophyll to pheophytin. Intensive microbial proliferation was also observed. Changes at 45 or 0% RH were typically insignificant. Seven of the 10 isolated fungal strains could decompose both iridoids, and five could decompose acteoside in vitro. CONCLUSION It was shown that exposure to water results in loss of bioactive molecules of P. lanceolata dried leaves, and that colonising fungi are the key contributors to this loss.


Journal of Pharmaceutical and Biomedical Analysis | 2012

Quantification of main bioactive metabolites from saffron (Crocus sativus) stigmas by a micellar electrokinetic chromatographic (MEKC) method

Sándor Gonda; Péter Parizsa; Gyula Surányi; Gyöngyi Gyémánt; Gábor Vasas

Saffron is an expensive spice, cultivated in many regions of the world. Its chief metabolites include crocins, which are responsible for the coloring ability, safranal, which is the main essential oil constituent, and picrocrocin which is the main bitter constituent of the spice. A simple micellar capillary electrochromatographic (MEKC) method capable of quantifying all three types of main constituents was established. The pH, sodium dodecyl sulphate (SDS) content and electrolyte concentration of the background electrolyte was optimized. A simple extraction protocol was developed which can extract all metabolites of different polarity from the saffron stigmas. Optimal background electrolyte composed of 20 mM disodium phosphate, 5mM sodium tetraborate, 100 mM SDS, pH was set 9.5. Optimal extracting solvent was the background electrolyte, incubated with the sample for 60 min. The proposed method allows quantification of picrocrocin, safranal, crocetin- Di-(β-D-gentiobiosyl) ester and crocetin (β-D-glycosyl)-(β-D-gentiobiosyl) ester within 17.5 min, with limit of detection values ranging from 0.006 to 0.04 mg/ml, from a single stigma.


Electrophoresis | 2013

Determination of phenylethanoid glycosides and iridoid glycosides from therapeutically used Plantago species by CE-MEKC

Sándor Gonda; Nhat Minh Nguyen; Gyula Batta; Gyöngyi Gyémánt; Csaba Máthé; Gábor Vasas

CE methods are valuable tools for medicinal plant quality management, screening, and analysis. Therefore, the aim of the current study was to optimize and validate a CE‐MEKC method for simultaneous quantification of four chief bioactive metabolites from Plantago species. The two most important secondary metabolite groups were aimed to be separated. Different electrolyte and surfactant types were tested. Surfactant concentration, BGE pH, electrolyte concentration, and buffering capacity were optimized. The final BGE consisted of 15 mM sodium tetraborate, 20 mM TAPS, and 250 mM DOC at pH 8.50. Acceptable precision, good stability, and accuracy were achieved, with high resolution for phenylethanoid glycosides. Analytes were separated within 20 min. The method was shown to be suitable for the quantification of the iridoid glycosides aucubin and catalpol, and the phenylethanoid glycosides acteoside (verbascoside) and plantamajoside from water extracts of different samples. The method was shown to be applicable to leaf extracts of Plantago lanceolata, Plantago major, and Plantago asiatica, the main species with therapeutic applications, and a biotechnological product, plant tissue cultures (calli) of P. lanceolata. Baseline separation of the main constituents from minor peaks was achieved, regardless of the matrix type.


Food Reviews International | 2013

A Review on the Phytochemical Composition and Potential Medicinal Uses of Horseradish (Armoracia rusticana) Root

Nhat Minh Nguyen; Sándor Gonda; Gábor Vasas

The current review focuses on a plant with a wide spectrum of potential uses, Armoracia rusticana (syn. Armoracia lapathifolia), commonly known as horseradish. The plant has been cultivated for a long time and is used in food industry, mainly as a condiment, but recent research has provided data on other possible uses. This paper focuses on the botany, distribution, agriculture, and chemical characterization of this root, and its possible therapeutical uses. Relations to other species, distribution, and ethnopharmacology are briefly discussed. An introduction is provided about the stability and technical properties of the main constituents. Detailed pharmacological description is given on the chief chemical compounds, allyl and phenethyl isothiocyanates, including in vitro and animal studies and pharmacokinetics. The main isothiocyanates are mainly researched as possible anticancer and antimicrobial agents.


Phytochemistry | 2013

Filamentous fungi from Plantago lanceolata L. leaves: contribution to the pattern and stability of bioactive metabolites.

Sándor Gonda; Attila Kiss; Tamás Emri; Gyula Batta; Gábor Vasas

The aim of this study was to test contribution of plant-associated microorganism (PAMs) to metabolite stability/instability in a medicinal plant matrix. Therefore, PAM strains were isolated and identified based on relevant DNA sequences from Plantago lanceolata leaves. Sterile water extracts of P. lanceolata were incubated with the isolated strains and antioxidants (ascorbic acid (AA), and EDTA) for 15 days, and changes in the concentrations of chief bioactive constituents (aucubin, catalpol, acteoside (=verbascoside)) were quantified by capillary electrophoresis. Phenolic breakdown-products were identified by GC-MS. PAMs were identified from the genera Epicoccum, Bipolaris, Cladosporium, Leptosphaerulina, Aspergillus, Eurotium and Penicillium (pathongens, endophytes, and other species). Some fungi caused significant decomposition of the chief constituents (p<0.001). Surprisingly, some strains inhibited breakdown of acteoside (p<0.001). Meanwhile, concentration of several phenolic acids increased in fungi-infested extracts (p<0.001). Gentisic acid, 4-hydroxyphenyl acetic acid, 4-hydroxybenzoic acid and hydroxytyrosol were only present when the extract was infested with a PAM. The products are powerful antioxidants and chelators. Concentrations of phenolic acids influenced acteoside stability significantly (p<0.01), as shown by basic data-mining techniques. AA and EDTA also significantly inhibited acteoside breakdown in sterile model solutions (p<0.05). Our results suggest that the phenolic acid mixture (produced during the fungal proliferation) protected acteoside from breakdown, possibly via its antioxidant activity and metal complexing ability. It was shown that PAMs can increase or decrease the stability of chief metabolites in herbal matrices, and can significantly alter the chemical pattern of the plant matrix.


Acta Biologica Hungarica | 2013

Histological, cytological and biochemical alterations induced by microcystin-LR and cylindrospermopsin in white mustard (Sinapis alba L.) seedlings

Csaba Máthé; Gábor Vasas; György Borbély; Ferenc Erdődi; Dániel Beyer; Andrea Kiss; Gyula Surányi; Sándor Gonda; Katalin Jámbrik; Márta M-Hamvas

This study compares the histological, cytological and biochemical effects of the cyanobacterial toxins microcystin-LR (MCY-LR) and cylindrospermopsin (CYN) in white mustard (Sinapis alba L.) seedlings, with special regard to the developing root system. Cyanotoxins induced different alterations, indicating their different specific biochemical activities. MCY-LR stimulated mitosis of root tip meristematic cells at lower concentrations (1 μg ml-1) and inhibited it at higher concentrations, while CYN had only inhibitory effects. Low CYN concentrations (0.01 μg ml-1) stimulated lateral root formation, whereas low MCY-LR concentrations increased only the number of lateral root primordia. Both inhibited lateral root development at higher concentrations. They induced lignifications, abnormal cell swelling and inhibited xylem differentiation in roots and shoots. MCY-LR and CYN induced the disruption of metaphase and anaphase spindles, causing altered cell divisions. Similar alterations could be related to decreased protein phosphatase (PP1 and PP2A) activities in shoots and roots. However, in vitro phosphatase assay with purified PP1 catalytic subunit proved that CYN in contrast to MCY-LR, decreased phosphatase activities of mustard in a non-specific way. This study intends to contribute to the understanding of the mechanisms of toxic effects of a protein phosphatase (MCY-LR) and a protein synthesis (CYN) inhibitory cyanotoxin in vascular plants.


Acta Biologica Hungarica | 2010

Cylindrospermopsin inhibits growth and modulates protease activity in the aquatic plants Lemna minor L. and Wolffia arrhiza (L.) Horkel

Katalin Jámbrik; Csaba Máthé; Gábor Vasas; István Bácsi; Gyula Surányi; Sándor Gonda; György Borbély; Márta Mikóné Hamvas

The toxic effects of cylindrospermopsin (cyanobacterial toxin) on animals have been examined extensively, but little research has focused on their effects on plants. In this study cylindrospermopsin (CYN) caused alterations of growth, soluble protein content and protease enzyme activity were studied on two aquatic plants Lemna minor and Wolffia arrhiza in short-term (5 days) experiments. For the treatments we used CYN containing crude extracts of Aphanizomenon ovalisporum (BGSD-423) and purified CYN as well. The maximal inhibitory effects on fresh weight of L. minor and W. arrhiza caused by crude extract were 60% and 54%, respectively, while the maximum inhibitory effects were 30% and 43% in the case of purified CYN at 20 μg ml(-1) CYN content of culture medium. In CYN-treated plants the concentration of soluble protein showed mild increases, especially in W. arrhiza. Protease isoenzyme activity gels showed significant alterations of enzyme activities under the influence of CYN. Several isoenzymes were far more active and new ones appeared in CYN-treated plants. Treatments with cyanobacterial crude extract caused stronger effects than the purified cyanobacterial toxins used in equivalent CYN concentrations.

Collaboration


Dive into the Sándor Gonda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamás Emri

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge