Sandra A. Wilks
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra A. Wilks.
Applied and Environmental Microbiology | 2007
Markku J. Lehtola; Eila Torvinen; Jaana Kusnetsov; Tarja Pitkänen; Leena Maunula; Carl-Henrik von Bonsdorff; Pertti J. Martikainen; Sandra A. Wilks; C. William Keevil; Ilkka T. Miettinen
ABSTRACT Most of the bacteria in drinking water distribution systems are associated with biofilms. In biofilms, their nutrient supply is better than in water, and biofilms can provide shelter against disinfection. We used a Propella biofilm reactor for studying the survival of Mycobacterium avium, Legionella pneumophila, Escherichia coli, and canine calicivirus (CaCV) (as a surrogate for human norovirus) in drinking water biofilms grown under high-shear turbulent-flow conditions. The numbers of M. avium and L. pneumophila were analyzed with both culture methods and with peptide nucleic acid fluorescence in situ hybridization (FISH) methods. Even though the numbers of pathogens in biofilms decreased during the experiments, M. avium and L. pneumophila survived in biofilms for more than 2 to 4 weeks in culturable forms. CaCV was detectable with a reverse transcription-PCR method in biofilms for more than 3 weeks. E. coli was detectable by culture for only 4 days in biofilms and 8 days in water, suggesting that it is a poor indicator of the presence of certain waterborne pathogens. With L. pneumophila and M. avium, culture methods underestimated the numbers of bacteria present compared to the FISH results. This study clearly proved that pathogenic bacteria entering water distribution systems can survive in biofilms for at least several weeks, even under conditions of high-shear turbulent flow, and may be a risk to water consumers. Also, considering the low number of virus particles needed to result in an infection, their extended survival in biofilms must be taken into account as a risk for the consumer.
Applied and Environmental Microbiology | 2008
M. S. Gião; N. F. Azevedo; Sandra A. Wilks; M. J. Vieira; C. W. Keevil
ABSTRACT Although the route of transmission of Helicobacter pylori remains unknown, drinking water has been considered a possible transmission vector. It has been shown previously that, in water, biofilms are a protective niche for several pathogens, protecting them from stressful conditions, such as low carbon concentration, shear stress, and less-than-optimal temperatures. In this work, the influence of these three parameters on the persistence and cultivability of H. pylori in drinking-water biofilms was studied. Autochthonous biofilm consortia were formed in a two-stage chemostat system and then inoculated with the pathogen. Total numbers of H. pylori cells were determined by microscopy using a specific H. pylori 16S rRNA peptide nucleic acid probe, whereas cultivable cells were assessed by standard plating onto selective H. pylori medium. Cultivable H. pylori could not be detected at any time point, but the ability of H. pylori cells to incorporate, undergo morphological transformations, persist, and even agglomerate in biofilms for at least 31 days without a noticeable decrease in the total cell number (on average, the concentration was between 1.54 × 106 and 2.25 × 106 cells cm−2) or in the intracellular rRNA content may indicate that the loss of cultivability was due to entry into a viable but noncultivable state. Unlike previous results obtained for pure-culture H. pylori biofilms, shear stress did not negatively influence the numbers of H. pylori cells attached, suggesting that the autochthonous aquatic bacteria have an important role in retaining this pathogen in the sessile state, possibly by providing suitable microaerophilic environments or linking biomolecules to which the pathogen adheres. Therefore, biofilms appear to provide not only a safe haven for H. pylori but also a concentration mechanism so that subsequent sloughing releases a concentrated bolus of cells that might be infectious and that could escape routine grab sample microbiological analyses and be a cause of concern for public health.
BMC Microbiology | 2011
M. S. Gião; N. F. Azevedo; Sandra A. Wilks; M. J. Vieira; C. W. Keevil
BackgroundIt is well established that Legionella pneumophila is a waterborne pathogen; by contrast, the mode of Helicobacter pylori transmission remains unknown but water seems to play an important role. This work aims to study the influence of five microorganisms isolated from drinking water biofilms on the survival and integration of both of these pathogens into biofilms.ResultsFirstly, both pathogens were studied for auto- and co-aggregation with the species isolated from drinking water; subsequently the formation of mono and dual-species biofilms by L. pneumophila or H. pylori with the same microorganisms was investigated. Neither auto- nor co-aggregation was observed between the microorganisms tested. For biofilm studies, sessile cells were quantified in terms of total cells by SYTO 9 staining, viable L. pneumophila or H. pylori cells were quantified using 16 S rRNA-specific peptide nucleic acid (PNA) probes and cultivable cells by standard culture techniques. Acidovorax sp. and Sphingomonas sp. appeared to have an antagonistic effect on L. pneumophila cultivability but not on the viability (as assessed by rRNA content using the PNA probe), possibly leading to the formation of viable but noncultivable (VBNC) cells, whereas Mycobacterium chelonae increased the cultivability of this pathogen. The results obtained for H. pylori showed that M. chelonae and Sphingomonas sp. help this pathogen to maintain cultivability for at least 24 hours.ConclusionsIt appears that M. chelonae may have an important role in the survival of both pathogens in drinking water. This work also suggests that the presence of some microorganisms can decrease the cultivability of L. pneumophila but not the viability which indicates that the presence of autochthonous microorganisms can lead to misleading results when the safety of water is assessed by cultivable methods alone.
Applied and Environmental Microbiology | 2006
Sandra A. Wilks; C. W. Keevil
ABSTRACT Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.
Applied and Environmental Microbiology | 2010
M. S. Gião; N. F. Azevedo; Sandra A. Wilks; M. J. Vieira; C. W. Keevil
ABSTRACT The use of a specific peptide nucleic acid (PNA) probe demonstrated that Helicobacter pylori persisted inside biofilms exposed to low concentrations of chlorine (0.2 and 1.2 mg liter−1) for at least 26 days, although no culturable cells were recovered. Coupled with data obtained using viability stains in pure culture, this result suggests that H. pylori can survive chlorination but remain undetectable by culture methods, which can be effectively replaced by PNA hybridization.
Biofouling | 2009
M. S. Gião; Sandra A. Wilks; N. F. Azevedo; M. J. Vieira; C. W. Keevil
Legionella pneumophila is a waterborne pathogen that has been isolated sporadically from drinking water distribution systems (DWDS). Resistance to disinfectants is mainly attributed to the association of cells with amoebae, but biofilms are also thought to provide some degree of protection. In the present work, a two-stage chemostat was used to form heterotrophic biofilms from drinking water to study the influence of chlorine on the presence of naturally occurring L. pneumophila. The pathogen was tracked in planktonic and sessile biofilm phases using standard culture recovery techniques for cultivable cells and a peptide nucleic acid fluorescence in situ hybridisation assay for total cells. The results showed that the total number of L. pneumophila cells in biofilms was not affected by the concentrations of chlorine tested, and the presence of L. pneumophila could not be detected by culturing. To restrict the outbreaks of disease caused by this bacterium, efforts need to be concentrated on preventing L. pneumophila from re-entering an infectious state by maintaining residual disinfectant levels through the entire DWDS network so that the resuscitation of cells via contact with amoebae is prevented.Legionella pneumophila is a waterborne pathogen that is mainly transmitted by the inhalation of contaminated aerosols. In this article, the influence of several physico-chemical parameters relating to the supply of potable water was studied using a L. pneumophila peptide nucleic acid (PNA) specific probe to quantify total L. pneumophila in addition to standard culture methods. A two-stage chemostat was used to form the heterotrophic biofilms, with biofilm generating vessels fed with naturally occurring L. pneumophila. The substratum was the commonly used potable water pipe material, uPVC. It proved impossible to recover cultivable L. pneumophila due to overgrowth by other microorganisms and/or the loss of cultivability of this pathogen. Nevertheless, results obtained for total L. pneumophila cells in biofilms using a specific PNA probe showed that for the two temperatures studied (15 and 20°C), there were no significant differences when shear stress was increased. However, when a source of carbon was added there was a significant increase in numbers at 20°C. A comparison of the two temperatures showed that at 15°C, the total cell numbers for L. pneumophila were generally higher compared with the total microbial flora, suggesting that lower temperatures support the inclusion of L. pneumophila in drinking water biofilms. The work reported in this article suggests that standard culture methods are not accurate for the evaluation of water quality in terms of L. pneumophila. This raises public health concerns since culture methods are still considered to be the gold standard for assessing the presence of this opportunistic pathogen in water.
Biofouling | 2009
M. S. Gião; Sandra A. Wilks; N. F. Azevedo; M. J. Vieira; C. W. Keevil
Legionella pneumophila is a waterborne pathogen that has been isolated sporadically from drinking water distribution systems (DWDS). Resistance to disinfectants is mainly attributed to the association of cells with amoebae, but biofilms are also thought to provide some degree of protection. In the present work, a two-stage chemostat was used to form heterotrophic biofilms from drinking water to study the influence of chlorine on the presence of naturally occurring L. pneumophila. The pathogen was tracked in planktonic and sessile biofilm phases using standard culture recovery techniques for cultivable cells and a peptide nucleic acid fluorescence in situ hybridisation assay for total cells. The results showed that the total number of L. pneumophila cells in biofilms was not affected by the concentrations of chlorine tested, and the presence of L. pneumophila could not be detected by culturing. To restrict the outbreaks of disease caused by this bacterium, efforts need to be concentrated on preventing L. pneumophila from re-entering an infectious state by maintaining residual disinfectant levels through the entire DWDS network so that the resuscitation of cells via contact with amoebae is prevented.
PLOS ONE | 2015
Sandra A. Wilks; Mandy Fader; C. William Keevil
The long-term use of indwelling catheters results in a high risk from urinary tract infections (UTI) and blockage. Blockages often occur from crystalline deposits, formed as the pH rises due to the action of urease-producing bacteria; the most commonly found species being Proteus mirabilis. These crystalline biofilms have been found to develop on all catheter materials with P. mirabilis attaching to all surfaces and forming encrustations. Previous studies have mainly relied on electron microscopy to describe this process but there remains a lack of understanding into the stages of biofilm formation. Using an advanced light microscopy technique, episcopic differential interference contrast (EDIC) microscopy combined with epifluorescence (EF), we describe a non-destructive, non-contact, real-time imaging method used to track all stages of biofilm development from initial single cell attachment to complex crystalline biofilm formation. Using a simple six-well plate system, attachment of P. mirabilis (in artificial urine) to sections of silicone and hydrogel latex catheters was tracked over time (up to 24 days). Using EDIC and EF we show how initial attachment occurred in less than 1 h following exposure to P. mirabilis. This was rapidly followed by an accumulation of an additional material (indicated to be carbohydrate based using lectin staining) and the presence of highly elongated, motile cells. After 24 h exposure, a layer developed above this conditioning film and within 4 days the entire surface (of both catheter materials) was covered with diffuse crystalline deposits with defined crystals embedded. Using three-dimensional image reconstruction software, cells of P. mirabilis were seen covering the crystal surfaces. EDIC microscopy could resolve these four components of the complex crystalline biofilm and the close relationship between P. mirabilis and the crystals. This real-time imaging technique permits study of this complex biofilm development with no risk of artefacts due to sample manipulation. A full understanding of the stages and components involved in crystalline encrustation formation will aid in the development of new protocols to manage and ultimately prevent catheter blockage.
Microbial Ecology | 1998
Sandra A. Wilks; Michael A. Sleigh
A bstractGrazing behavior of both individual cells and populations of the marine hypotrich Euplotes mutabilis, a largely benthic ciliate that feeds on suspended particles, was studied using fluorescent latex microspheres. Microspheres of sizes 0.57-, 1.90-, 3.06-, 5.66-, and 10.0-μm diam were offered at concentrations from 102 to 106 ml−1. Their uptake in a ten-min period was determined. Food particles within such ranges of size and concentration are found under natural conditions. The ciliates ingested particles of all sizes offered. Uptake rates at all concentrations were dependent upon particle size, with 1.90- and 3.06-μm diam microspheres having the highest uptake rate in all cases. For all sizes, there was an increase in the percentage of feeding cells and in the uptake rate (the number of particles ingested cell−1 h−1), with increasing particle concentration. When uptake was expressed as the volume ingested, maximum values were obtained for 5.85-μm diam microspheres at a concentration of 106 ml−1. By taking a small number of large particles, present at a low concentration in the medium, a ciliate can ingest a greater biovolume than by taking a high number of small particles which are abundant in the medium. These results demonstrate that some ciliates can graze particles of a wide range of sizes. Also, its nutrition can be affected by changing ambient concentrations of different prey, both through effects on the proportion of feeding cells and through the relative food content of the particles. The data can also add to the understanding of food niche partitioning between species. At low particle concentrations, particularly, it is important to consider the behavior of individual ciliates as well as of the whole population.
European Journal of Protistology | 1994
Raymond J.G. Leakey; Sandra A. Wilks; Alistair W.A. Murray
The effects of cytochalasin B and dimethyl sulphoxide (DMSO) on ciliate ingestion and growth were investigated in laboratory cultures of the freshwater ciliate Tetrahymena pyriformis and the marine ciliate Uronema marinum, in order to assess whether cytochalasin B could be used to inhibit grazing selectively in natural ciliate communities. The ciliates were exposed to a final concentration of 0–10 ?g ml?1 cytochalasin B dissolved in 0.4% DMSO, and to 0–0.4% DMSO only, for between 1 and 48 hours, then fed carmine particles as tracers of particle ingestion. DMSO had no effect on particle ingestion. Cytochalasin B reduced particle ingestion in U. marinum and T. pyriformis at respective concentrations of ?0.1?g.ml?1 and ?1.0 ?g ml?1, achieving a maximum effect after 4–8 hours. The effect of cytochalasin B was greater on U. marinum, with a minimum of only 4% of the population feeding after 4 hours exposure to 10 ?g ml?1, as compared to a minimum of 48% recorded for T. pyriformis after 8 hours exposure to the same concentration. Cytochalasin B and DMSO at these concentrations had no effect on ciliate growth rates over 48 hours suggesting that the drug has potential as a means of reducing ciliate grazing in field samples