Sandra Albanese
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Albanese.
BioMed Research International | 2014
Sara Gargiulo; Matteo Gramanzini; Rosario Megna; Adelaide Greco; Sandra Albanese; Claudio Manfredi; Arturo Brunetti
The normal growth pattern of female C57BL/6J mice, from 5 to 30 weeks of age, has been investigated in a longitudinal study. Weight, body surface area (BS), and body mass index (BMI) were evaluated in forty mice. Lean mass and fat mass, bone mineral content (BMC), and bone mineral density (BMD) were monitored by dual energy X-ray absorptiometry (DEXA). Weight and BS increased linearly (16.15 ± 0.64–27.64 ± 1.42 g; 51.13 ± 0.74–79.57 ± 2.15 cm2, P < 0.01), more markedly from 5 to 9 weeks of age (P < 0.001). BMD showed a peak at 17 weeks (0.0548 ± 0.0011 g/cm2∗ m, P < 0.01). Lean mass showed an evident gain at 9 (15.8 ± 0.8 g, P < 0.001) and 25 weeks (20.5 ± 0.3 g, P < 0.01), like fat mass from 13 to 17 weeks (2.0 ± 0.4–3.6 ± 0.7 g, P < 0.01). BMI and lean mass index (LMI) reached the highest value at 21 weeks (3.57 ± 0.02–0.284 ± 0.010 g/cm2, resp.), like fat mass index (FMI) at 17 weeks (0.057 ± 0.009 g/cm2) (P < 0.01). BMI, weight, and BS showed a moderate positive correlation (0.45–0.85) with lean mass from 5 to 21 weeks. Mixed linear models provided a good prediction for lean mass, fat mass, and BMD. This study may represent a baseline reference for a future comparison of wild-type C57BL/6J mice with models of altered growth.
Theranostics | 2017
Simona Camorani; Billy Samuel Hill; Raffaela Fontanella; Adelaide Greco; Matteo Gramanzini; Luigi Auletta; Sara Gargiulo; Sandra Albanese; Enrico Lucarelli; Laura Cerchia; Antonella Zannetti
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are shown to participate in tumor progression by establishing a favorable tumor microenvironment (TME) that promote metastasis through a cytokine networks. However, the mechanism of homing and recruitment of BM-MSCs into tumors and their potential role in malignant tissue progression is poorly understood and controversial. Here we show that BM-MSCs increase aggressiveness of triple-negative breast cancer (TNBC) cell lines evaluated as capability to migrate, invade and acquire stemness markers. Importantly, we demonstrate that the treatment of BM-MSCs with a nuclease-resistant RNA aptamer against platelet-derived growth factor receptor β (PDGFRβ) causes the inhibition of receptor-dependent signaling pathways thus drastically hampering BM-MSC recruitment towards TNBC cell lines and BM-MSCs trans-differentiation into carcinoma-associated fibroblast (CAF)-like cells. Moreover, in vivo molecular imaging analysis demonstrated the aptamer ability to prevent BM-MSCs homing to TNBC xenografts. Collectively, our results indicate the anti-PDGFRβ aptamer as a novel therapeutic tool to interfere with BM-MSCs attraction to TNBC providing the rationale to further explore the aptamer in more complex pre-clinical settings.
Quarterly Journal of Nuclear Medicine and Molecular Imaging | 2017
Luigi Auletta; Matteo Gramanzini; Sara Gargiulo; Sandra Albanese; Marco Salvatore; Adelaide Greco
Preclinical molecular imaging is an emerging field. Improving the ability of scientists to study the molecular basis of human pathology in animals is of the utmost importance for future advances in all fields of human medicine. Moreover, the possibility of developing new imaging techniques or of implementing old ones adapted to the clinic is a significant area. Cardiology, neurology, immunology and oncology have all been studied with preclinical molecular imaging. The functional techniques of photoacoustic imaging (PAI), fluorescence molecular tomography (FMT), positron emission tomography (PET), and single photon emission computed tomography (SPECT) in association with each other or with the anatomic reference provided by computed tomography (CT) as well as with anatomic and functional information provided by magnetic resonance (MR) have all been proficiently applied to animal models of human disease. All the above-mentioned imaging techniques have shown their ability to explore the molecular mechanisms involved in animal models of disease. The clinical translatability of most of the techniques motivates the ongoing study of their possible fields of application. The ability to combine two or more techniques allows obtaining as much information as possible on the molecular processes involved in pathologies, reducing the number of animals necessary in each experiment. Merging molecular probes compatible with various imaging technique will further expand the capability to achieve the best results.
PLOS ONE | 2013
Adelaide Greco; Monica Ragucci; Anna Rita Daniela Coda; Alessandro Rosa; Sara Gargiulo; Raffaele Liuzzi; Matteo Gramanzini; Sandra Albanese; Sabina Pappatà; Marcello Mancini; Arturo Brunetti; Marco Salvatore
Background Ultrasound is a valuable non-invasive tool used in obstetrics and gynecology to monitor the growth and well being of the human fetus. The laboratory mouse has recently emerged as an appropriate model for fetal and perinatal studies because morphogenetic processes in mice exhibit adequate homology to those in humans, and genetic manipulations are relatively simple to perform in mice. High-frequency ultrasound (HFUS) has recently become available for small animal preclinical imaging and can be used to study pregnancy and development in the mouse. The objective of the current study was to assess the main applications of HFUS in the evaluation of fetal growth and placental function and to better understand human congenital diseases. Methodology/Principal Findings On each gestational day, at least 5 dams were monitored with HFUS; a total of ∼200 embryos were examined. Because it is not possible to measure each variable for the entire duration of the pregnancy, the parameters were divided into three groups as a function of the time at which they were measured. Univariate analysis of the relationship between each measurement and the embryonic day was performed using Spearman’s rank correlation (Rs). Continuous linear regression was adopted for multivariate analysis of significant parameters. All statistical tests were two-sided, and a p value of 0.05 was considered statistically significant. Conclusions/Significance The study describes the main applications of HFUS to assess changes in phenotypic parameters in the developing CD1 mouse embryo and fetus during pregnancy and to evaluating physiological fetal and placental growth and the development of principal organs such as the heart, kidney, liver, brain and eyes in the embryonic mouse. A database of normal structural and functional parameters of mouse development will provide a useful tool for the better understanding of morphogenetic and cardiovascular anomalies in transgenic and mutant mouse models.
Sensors | 2012
Adelaide Greco; Monica Ragucci; Raffaele Liuzzi; Sara Gargiulo; Matteo Gramanzini; Anna Rita Daniela Coda; Sandra Albanese; Marcello Mancini; Marco Salvatore; Arturo Brunetti
Background Preclinical perfusion studies are useful for the improvement of diagnosis and therapy in dermatologic, cardiovascular and rheumatic human diseases. The Laser Doppler Perfusion Imaging (LDPI) technique has been used to evaluate superficial alterations of the skin microcirculation in surgically induced murine hindlimb ischemia. We assessed the reproducibility and the accuracy of LDPI acquisitions and identified several critical factors that could affect LDPI measurements in mice. Methods Twenty mice were analysed. Statistical standardisation and a repeatability and reproducibility analysis were performed on mouse perfusion signals with respect to differences in body temperature, the presence or absence of hair, the type of anaesthesia used for LDPI measurements and the position of the mouse body. Results We found excellent correlations among measurements made by the same operator (i.e., repeatability) under the same experimental conditions and by two different operators (i.e., reproducibility). A Bland-Altman analysis showed the absence of bias in repeatability (p = 0.29) or reproducibility (p = 0.89). The limits of agreement for repeatability were –0.357 and –0.033, and for reproducibility, they were –0.270 and 0.238. Significant differences in perfusion values were observed in different experimental groups. Conclusions Different experimental conditions must be considered as a starting point for the evaluation of new drugs and strategic therapies.
Quarterly Journal of Nuclear Medicine and Molecular Imaging | 2017
Adelaide Greco; Sandra Albanese; Luigi Auletta; Flavia De Carlo; Marco Salvatore; Candace M Howard; Pier Paolo Claudio
Several advances have been made toward understanding the biology of cancer and most of them are due to robust genetic studies that led to the scientific recognition that although many patients have the same type of cancer their tumors may have harbored different molecular alterations. Personalized therapy and the development of advanced techniques of preclinical imaging and new murine models of disease are emerging concepts that are allowing mapping of disease markers in vivo and in some cases also receptor targeted therapy. Aim of this review is to illustrate some emerging models of disease that allow patient tumor implantation in mice for subsequent drug testing and advanced approaches for therapy mediated by preclinical imaging. In particular we discuss targeted therapy mediated by high frequency ultrasound and magnetic resonance, two emerging techniques in molecular preclinical therapy.
Thyroid | 2016
Adelaide Greco; Sandra Albanese; Luigi Auletta; Peppino Mirabelli; Antonella Zannetti; Crescenzo D'Alterio; Gennaro Di Maro; Francesca Maria Orlandella; Giuliana Salvatore; Andrea Soricelli; Marco Salvatore
BACKGROUND Thyroid carcinoma is the most common endocrine malignancy and has an increasing incidence. High-frequency ultrasound (HFUS) has a spatial resolution of 30 μm, which is a property that has been exploited for thyroid visualization and analysis in mice. The aim of this study was to generate a novel orthotopic mouse model of human follicular thyroid carcinoma (FTC) using an HFUS-guided injection system. METHODS Twenty Balb/C nude mice were injected in the right lobe of the thyroid with 2 × 10(6) FTC-133 cells using the microinjection HFUS-guided system, and 20 mice, used as a control, underwent surgical orthotopic implantation of 2 × 10(6) FTC-133 cells in the right lobe of the thyroid. All mice underwent HFUS imaging two weeks after cell injection; HFUS examinations and tumor volume (TV) measurements were repeated weekly. Micro-computed tomography was performed at different time points to determine whether lung metastasis had occurred. TVs were compared between the two models (surgical vs. HFUS-guided) using the Mann-Whitney U-test, and the Mantel-Cox log-rank test was applied to evaluate the death hazard. Hematoxylin and eosin analysis of formalin-fixed, paraffin-embedded mouse tissue was performed to validate the in vivo imaging results. RESULTS Of the HFUS-guided injected mice, 9/18 survived up to 40 days after the injection of tumor cells. Mice injected surgically had 100% mortality at day 29. Of 38 mice, 29 (14/18 HFUS, 15/20 surgical) showed metastasis in the salivary glands and lymph nodes, and 13 (10/18 HFUS, 3/20 surgical) also showed metastasis in the lungs, which was confirmed by histological analysis. In the surgical group, there was an evident, frequent (12/20 mice) involvement of the contralateral lobe of the thyroid, whereas this feature was only detected in 1/18 mice in the HFUS group. Statistical analysis showed the same pattern of growth in the two groups, and a significant hazard in the mice in the surgical group (p = 0.03). CONCLUSIONS This study demonstrated the technical feasibility of an HFUS-guided orthotopic mouse model of FTC. The HFUS-guided orthotopic model is easily reproducible and allows prolonged monitoring of the disease because the animals showed an increased survival rate.
Frontiers in Microbiology | 2016
Chiara Pagliuca; Annunziata Gaetana Cicatiello; Roberta Colicchio; Adelaide Greco; Raimondo Cerciello; Luigi Auletta; Sandra Albanese; Elena Scaglione; Caterina Pagliarulo; Gabiria Pastore; Gelsomina Mansueto; Arturo Brunetti; Bice Avallone; Paola Salvatore
Bartonella henselae is a gram-negative facultative intracellular bacterium and is the causative agent of cat-scratch disease. Our previous data have established that Bacteroides fragilis colonization is able to prevent B. henselae damages through the polysaccharide A (PSA) in an experimental murine model. In order to determine whether the PSA is essential for the protection against pathogenic effects of B. henselae in immunocompromised hosts, SCID mice were co-infected with B. fragilis wild type or its mutant B. fragilis ΔPSA and the effects of infection on murine tissues have been observed by High-Frequency Ultrasound (HFUS), histopathological examination, and Transmission Electron Microscopy (TEM). For the first time, echostructure, hepatic lobes length, vascular alterations, and indirect signs of hepatic dysfunctions, routinely used as signs of disease in humans, have been analyzed in an immunocompromised murine model. Our findings showed echostructural alterations in all infected mice compared with the Phosphate Buffer Solution (PBS) control group; further, those infected with B. henselae and co-infected with B. henselae/B. fragilis ΔPSA presented the major echostructural alterations. Half of the mice infected with B. henselae and all those co-infected with B. henselae/B. fragilis ΔPSA have showed an altered hepatic echogenicity compared with the renal cortex. The echogenicity score of co-infected mice with B. henselae/B. fragilis ΔPSA differed significantly compared with the PBS control group (p < 0.05). Moreover the inflammation score of the histopathological evaluation was fairly concordant with ultrasound findings. Ultrastructural analysis performed by TEM revealed no significant alterations in liver samples of SCID mice infected with B. fragilis wild type while those infected with B. fragilis ΔPSA showed the presence of collagen around the main vessels compared with the PBS control group. The liver samples of mice infected with B. henselae showed macro-areas rich in collagen, stellate cells, and histiocytic cells. Interestingly, our data demonstrated that immunocompromised SCID mice infected with B. henselae and co-infected with B. henselae/B. fragilis ΔPSA showed the most severe morpho-structural liver damage. In addition, these results suggests that the HFUS together with histopathological evaluation could be considered good imaging approach to evaluate hepatic alterations.
Experimental Biology and Medicine | 2017
Luigi Auletta; Adelaide Greco; Sandra Albanese; Leonardo Meomartino; Marco Salvatore; Marcello Mancini
To date, no studies have explored the effect of abnormal cerebral venous circulation on brain disorders, whereas many studies have investigated neurodegenerative brain anomalies associated with arterial diseases. The aim of our study was to demonstrate the feasibility of different surgical techniques to induce venous obstruction of cerebral brain drainage. Six C57/black mice underwent bilateral occlusion of the external jugular vein (group EJV), six underwent bilateral occlusion of the internal jugular vein (group IJV), and six underwent bilateral occlusion of both the EJV and the IJV (group EJV/IJV). Within each group, the interruption of blood flow was obtained via monopolar electro-coagulation (ME) in three mice and via surgical ligation (SL) in the remaining three mice. A “sham group” of two mice was used as the control. High-frequency ultrasound (HFUS) was used to detect the absence of blood flow in the examined vessel. The ME procedure led to successful results in two of nine (22%) mice, one in the EJV group, one in the EJV/IJV group, and zero in the IJV group, and 4 of 18 (22%) mice when considering individual veins (i.e., total number of EJVs and IJVs occluded). The SL procedure was successful in two of three (67%) mice in the EJV group, in three of three (100%) mice in the IJV and in three of four (75%) mice in the EJV/IJV group. Therefore, the overall success rate was 8/10 (80%) when considering mice, and 20/26 (77%) when considering individual veins. The monopolar electro-coagulation method exhibited a high mortality due to cardiorespiratory arrest, while the results of the bilateral surgical ligation of EJVs and IJVs show that it is technically feasible and safe.
Reproductive Sciences | 2015
Adelaide Greco; Anna Rita Daniela Coda; Sandra Albanese; Monica Ragucci; Raffaele Liuzzi; Luigi Auletta; Sara Gargiulo; Francesco Lamagna; Marco Salvatore; Marcello Mancini
An accurate diagnosis of congenital heart defects during fetal development is critical for interventional planning. Mice can be used to generate animal models with heart defects, and high-frequency ultrasound (HFUS) imaging enables in utero imaging of live mouse embryos. A wide range of physiological measurements is possible using Doppler-HFUS imaging; limitations of any single measurement warrant a multiparameter approach to characterize cardiovascular function. Doppler-HFUS was used to explore the embryonic (heart, aorta) and extraembryonic (umbilical blood flow) circulatory systems to create a database in normal mouse embryos between 9.5 and 16.5 days of gestation. Multivariate analyses were performed to explore correlations between gestational age and embryo echocardiographic parameters. Heart rate and peak velocity in the aorta were positively correlated with gestational time, whereas cardiac cycle length, isovolumetric relaxation time, myocardial performance index, and arterial deceleration time of the umbilical cord were negatively correlated with it. Doppler-HFUS facilitated detailed characterization of the embryonic mouse circulation and represents a useful tool for investigation of the early mouse embryonic cardiovascular system.