Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Almeida is active.

Publication


Featured researches published by Sandra Almeida.


Nature | 2015

GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport.

Brian D. Freibaum; Yubing Lu; Rodrigo Lopez-Gonzalez; Nam Chul Kim; Sandra Almeida; Kyung Ha Lee; Nisha M. Badders; Marc Valentine; Bruce L. Miller; Philip C. Wong; Leonard Petrucelli; Hong Joo Kim; Fen-Biao Gao; J. Paul Taylor

The GGGGCC (G4C2) repeat expansion in a noncoding region of C9orf72 is the most common cause of sporadic and familial forms of amyotrophic lateral sclerosis and frontotemporal dementia. The basis for pathogenesis is unknown. To elucidate the consequences of G4C2 repeat expansion in a tractable genetic system, we generated transgenic fly lines expressing 8, 28 or 58 G4C2-repeat-containing transcripts that do not have a translation start site (AUG) but contain an open-reading frame for green fluorescent protein to detect repeat-associated non-AUG (RAN) translation. We show that these transgenic animals display dosage-dependent, repeat-length-dependent degeneration in neuronal tissues and RAN translation of dipeptide repeat (DPR) proteins, as observed in patients with C9orf72-related disease. This model was used in a large-scale, unbiased genetic screen, ultimately leading to the identification of 18 genetic modifiers that encode components of the nuclear pore complex (NPC), as well as the machinery that coordinates the export of nuclear RNA and the import of nuclear proteins. Consistent with these results, we found morphological abnormalities in the architecture of the nuclear envelope in cells expressing expanded G4C2 repeats in vitro and in vivo. Moreover, we identified a substantial defect in RNA export resulting in retention of RNA in the nuclei of Drosophila cells expressing expanded G4C2 repeats and also in mammalian cells, including aged induced pluripotent stem-cell-derived neurons from patients with C9orf72-related disease. These studies show that a primary consequence of G4C2 repeat expansion is the compromise of nucleocytoplasmic transport through the nuclear pore, revealing a novel mechanism of neurodegeneration.


Acta Neuropathologica | 2013

Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons

Sandra Almeida; Eduardo Gascon; Helene Tran; Hsin Jung Chou; Tania F. Gendron; Steven R. DeGroot; Andrew R. Tapper; Chantal Sellier; Nicolas Charlet-Berguerand; Anna Karydas; William W. Seeley; Adam L. Boxer; Leonard Petrucelli; Bruce L. Miller; Fen-Biao Gao

The recently identified GGGGCC repeat expansion in the noncoding region of C9ORF72 is the most common pathogenic mutation in patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). We generated a human neuronal model and investigated the pathological phenotypes of human neurons containing GGGGCC repeat expansions. Skin biopsies were obtained from two subjects who had >1,000 GGGGCC repeats in C9ORF72 and their respective fibroblasts were used to generate multiple induced pluripotent stem cell (iPSC) lines. After extensive characterization, two iPSC lines from each subject were selected, differentiated into postmitotic neurons, and compared with control neurons to identify disease-relevant phenotypes. Expanded GGGGCC repeats exhibit instability during reprogramming and neuronal differentiation of iPSCs. RNA foci containing GGGGCC repeats were present in some iPSCs, iPSC-derived human neurons and primary fibroblasts. The percentage of cells with foci and the number of foci per cell appeared to be determined not simply by repeat length but also by other factors. These RNA foci do not seem to sequester several major RNA-binding proteins. Moreover, repeat-associated non-ATG (RAN) translation products were detected in human neurons with GGGGCC repeat expansions and these neurons showed significantly elevated p62 levels and increased sensitivity to cellular stress induced by autophagy inhibitors. Our findings demonstrate that key neuropathological features of FTD/ALS with GGGGCC repeat expansions can be recapitulated in iPSC-derived human neurons and also suggest that compromised autophagy function may represent a novel underlying pathogenic mechanism.


Nature Cell Biology | 2011

Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity

Tse-Chun Kuo; Chun-Ting Chen; Desiree M. Baron; Tamer T. Onder; Sabine Loewer; Sandra Almeida; Cara M. Weismann; Ping Xu; JeanMarie Houghton; Fen-Biao Gao; George Q. Daley

The midbody is a singular organelle formed between daughter cells during cytokinesis and required for their final separation. Midbodies persist in cells long after division as midbody derivatives (MBds), but their fate is unclear. Here we show that MBds are inherited asymmetrically by the daughter cell with the older centrosome. They selectively accumulate in stem cells, induced pluripotent stem cells and potential cancer ‘stem cells’ in vivo and in vitro. MBd loss accompanies stem-cell differentiation, and involves autophagic degradation mediated by binding of the autophagic receptor NBR1 to the midbody protein CEP55. Differentiating cells and normal dividing cells do not accumulate MBds and possess high autophagic activity. Stem cells and cancer cells accumulate MBds by evading autophagosome encapsulation and exhibit low autophagic activity. MBd enrichment enhances reprogramming to induced pluripotent stem cells and increases the in vitro tumorigenicity of cancer cells. These results indicate unexpected roles for MBds in stem cells and cancer ‘stem cells’.


Neuron | 2015

Differential Toxicity of Nuclear RNA Foci versus Dipeptide Repeat Proteins in a Drosophila Model of C9ORF72 FTD/ALS

Helene Tran; Sandra Almeida; Jill Moore; Tania D Gendron; UmaDevi Chalasani; Yubing Lu; Xing Du; Jeffrey A. Nickerson; Leonard Petrucelli; Zhiping Weng; Fen-Biao Gao

Dipeptide repeat (DPR) proteins are toxic in various models of FTD/ALS with GGGGCC (G4C2) repeat expansion. However, it is unclear whether nuclear G4C2 RNA foci also induce neurotoxicity. Here, we describe a Drosophila model expressing 160 G4C2 repeats (160R) flanked by human intronic and exonic sequences. Spliced intronic 160R formed nuclear G4C2 sense RNA foci in glia and neurons about ten times more abundantly than in human neurons; however, they had little effect on global RNA processing and neuronal survival. In contrast, highly toxic 36R in the context of poly(A)(+) mRNA were exported to the cytoplasm, where DPR proteins were produced at >100-fold higher level than in 160R flies. Moreover, the modest toxicity of intronic 160R expressed at higher temperature correlated with increased DPR production, but not RNA foci. Thus, nuclear RNA foci are neutral intermediates or possibly neuroprotective through preventing G4C2 RNA export and subsequent DPR production.


Journal of Biological Chemistry | 2011

Suberoylanilide Hydroxamic Acid (Vorinostat) Up-regulates Progranulin Transcription RATIONAL THERAPEUTIC APPROACH TO FRONTOTEMPORAL DEMENTIA

Basar Cenik; Chantelle F. Sephton; Colleen M. Dewey; Xunde Xian; Shuguang Wei; Kimberley Yu; Wenze Niu; Giovanni Coppola; Sarah E. Coughlin; Suzee E. Lee; Daniel R. Dries; Sandra Almeida; Daniel H. Geschwind; Fen-Biao Gao; Bruce L. Miller; Robert V. Farese; Bruce A. Posner; Gang Yu; Joachim Herz

Progranulin (GRN) haploinsufficiency is a frequent cause of familial frontotemporal dementia, a currently untreatable progressive neurodegenerative disease. By chemical library screening, we identified suberoylanilide hydroxamic acid (SAHA), a Food and Drug Administration-approved histone deacetylase inhibitor, as an enhancer of GRN expression. SAHA dose-dependently increased GRN mRNA and protein levels in cultured cells and restored near-normal GRN expression in haploinsufficient cells from human subjects. Although elevation of secreted progranulin levels through a post-transcriptional mechanism has recently been reported, this is, to the best of our knowledge, the first report of a small molecule enhancer of progranulin transcription. SAHA has demonstrated therapeutic potential in other neurodegenerative diseases and thus holds promise as a first generation drug for the prevention and treatment of frontotemporal dementia.


Cell Reports | 2012

Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects

Sandra Almeida; Zhijun Zhang; Giovanni Coppola; Wenjie Mao; Kensuke Futai; Anna Karydas; Michael D. Geschwind; M. Carmela Tartaglia; Fuying Gao; Davide Gianni; Miguel Sena-Esteves; Daniel H. Geschwind; Bruce L. Miller; Robert V. Farese; Fen-Biao Gao

The pathogenic mechanisms of frontotemporal dementia (FTD) remain poorly understood. Here we generated multiple induced pluripotent stem cell lines from a control subject, a patient with sporadic FTD, and an FTD patient with a novel heterozygous GRN mutation (progranulin [PGRN] S116X). In neurons and microglia differentiated from PGRN S116X induced pluripotent stem cells, the levels of intracellular and secreted PGRN were reduced, establishing patient-specific cellular models of PGRN haploinsufficiency. Through a systematic screen of inducers of cellular stress, we found that PGRN S116X neurons, but not sporadic FTD neurons, exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover, the serine/threonine kinase S6K2, a component of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by PGRN expression. Our findings identify cell-autonomous, reversible defects in patient neurons with PGRN deficiency, and provide a compelling model for studying PGRN-dependent pathogenic mechanisms and testing potential therapies.


Nature Medicine | 2014

Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia

Eduardo Gascon; Kelleen Lynch; Hongyu Ruan; Sandra Almeida; Jamie M. Verheyden; William W. Seeley; Dennis W. Dickson; Leonard Petrucelli; Danqiong Sun; Jian Jiao; Hongru Zhou; Mira Jakovcevski; Schahram Akbarian; Wei-Dong Yao; Fen-Biao Gao

Neurodegenerative diseases, such as frontotemporal dementia (FTD), are often associated with behavioral deficits, but the underlying anatomical and molecular causes remain poorly understood. Here we show that forebrain-specific expression of FTD-associated mutant CHMP2B in mice causes several age-dependent neurodegenerative phenotypes, including social behavioral impairments. The social deficits were accompanied by a change in AMPA receptor (AMPAR) composition, leading to an imbalance between Ca2+-permeable and Ca2+-impermeable AMPARs. Expression of most AMPAR subunits was regulated by the brain-enriched microRNA miR-124, whose abundance was markedly decreased in the superficial layers of the cerebral cortex of mice expressing the mutant CHMP2B. We found similar changes in miR-124 and AMPAR levels in the frontal cortex and induced pluripotent stem cell–derived neurons from subjects with behavioral variant FTD. Moreover, ectopic miR-124 expression in the medial prefrontal cortex of mutant mice decreased AMPAR levels and partially rescued behavioral deficits. Knockdown of the AMPAR subunit Gria2 also alleviated social impairments. Our results identify a previously undescribed mechanism involving miR-124 and AMPARs in regulating social behavior in FTD and suggest a potential therapeutic avenue.


PLOS ONE | 2013

Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations

Zhijun Zhang; Sandra Almeida; Yubing Lu; Agnes L. Nishimura; Lingtao Peng; Danqiong Sun; Bei Wu; Anna Karydas; Maria Carmela Tartaglia; Jamie Fong; Bruce L. Miller; Robert V. Farese; Melissa J. Moore; Christopher Shaw; Fen-Biao Gao

Transactive response DNA-binding protein 43 (TDP-43) is a major pathological protein in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). There are many disease-associated mutations in TDP-43, and several cellular and animal models with ectopic overexpression of mutant TDP-43 have been established. Here we sought to study altered molecular events in FTD and ALS by using induced pluripotent stem cell (iPSC) derived patient neurons. We generated multiple iPSC lines from an FTD/ALS patient with the TARDBP A90V mutation and from an unaffected family member who lacked the mutation. After extensive characterization, two to three iPSC lines from each subject were selected, differentiated into postmitotic neurons, and screened for relevant cell-autonomous phenotypes. Patient-derived neurons were more sensitive than control neurons to 100 nM straurosporine but not to other inducers of cellular stress. Three disease-relevant cellular phenotypes were revealed under staurosporine-induced stress. First, TDP-43 was localized in the cytoplasm of a higher percentage of patient neurons than control neurons. Second, the total TDP-43 level was lower in patient neurons with the A90V mutation. Third, the levels of microRNA-9 (miR-9) and its precursor pri-miR-9-2 decreased in patient neurons but not in control neurons. The latter is likely because of reduced TDP-43, as shRNA-mediated TDP-43 knockdown in rodent primary neurons also decreased the pri-miR-9-2 level. The reduction in miR-9 expression was confirmed in human neurons derived from iPSC lines containing the more pathogenic TARDBP M337V mutation, suggesting miR-9 downregulation might be a common pathogenic event in FTD/ALS. These results show that iPSC models of FTD/ALS are useful for revealing stress-dependent cellular defects of human patient neurons containing rare TDP-43 mutations in their native genetic contexts.


PLOS ONE | 2011

Progranulin, a Glycoprotein Deficient in Frontotemporal Dementia, Is a Novel Substrate of Several Protein Disulfide Isomerase Family Proteins

Sandra Almeida; Lijuan Zhou; Fen-Biao Gao

The reduced production or activity of the cysteine-rich glycoprotein progranulin is responsible for about 20% of cases of familial frontotemporal dementia. However, little is known about the molecular mechanisms that govern the level and secretion of progranulin. Here we show that progranulin is expressed in mouse cortical neurons and more prominently in mouse microglia in culture and is abundant in the endoplasmic reticulum (ER) and Golgi. Using chemical crosslinking, immunoprecipitation, and mass spectrometry, we found that progranulin is bound to a network of ER Ca2+-binding chaperones including BiP, calreticulin, GRP94, and four members of the protein disulfide isomerase (PDI) family. Loss of ERp57 inhibits progranulin secretion. Thus, progranulin is a novel substrate of several PDI family proteins and modulation of the ER chaperone network may be a therapeutic target for controlling progranulin secretion.


The EMBO Journal | 2016

ALS-linked protein disulfide isomerase variants cause motor dysfunction

Ute Woehlbier; Alicia Colombo; Mirva J. Saaranen; Viviana Pérez; Jorge Ojeda; Fernando J. Bustos; Catherine Andreu; Mauricio Torres; Vicente Valenzuela; Danilo B. Medinas; Pablo Rozas; René L. Vidal; Rodrigo Lopez-Gonzalez; Johnny Salameh; Sara Fernández-Collemann; Natalia Muñoz; Soledad Matus; Ricardo Armisen; Alfredo I. Sagredo; Karina Palma; Thergiory Irrazabal; Sandra Almeida; Paloma Gonzalez-Perez; Mario Campero; Fen-Biao Gao; Pablo Henny; Brigitte van Zundert; Lloyd W. Ruddock; Miguel L. Concha; Juan Pablo Henríquez

Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) are ER foldases identified as possible ALS biomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized four ALS‐linked mutations recently identified in two major PDI genes, PDIA1 and PDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of these PDI variants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutant PDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of these PDI mutants. Finally, targeting ERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifies ER proteostasis imbalance as a risk factor for ALS, driving initial stages of the disease.

Collaboration


Dive into the Sandra Almeida's collaboration.

Top Co-Authors

Avatar

Fen-Biao Gao

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Karydas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodrigo Lopez-Gonzalez

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Yubing Lu

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Helene Tran

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Zhijun Zhang

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge