Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Clauder-Münster is active.

Publication


Featured researches published by Sandra Clauder-Münster.


Nature | 2009

Bidirectional promoters generate pervasive transcription in yeast

Zhenyu Xu; Wu Wei; Julien Gagneur; Fabiana Perocchi; Sandra Clauder-Münster; Jurgi Camblong; Elisa Guffanti; Françoise Stutz; Wolfgang Huber; Lars M. Steinmetz

Genome-wide pervasive transcription has been reported in many eukaryotic organisms, revealing a highly interleaved transcriptome organization that involves hundreds of previously unknown non-coding RNAs. These recently identified transcripts either exist stably in cells (stable unannotated transcripts, SUTs) or are rapidly degraded by the RNA surveillance pathway (cryptic unstable transcripts, CUTs). One characteristic of pervasive transcription is the extensive overlap of SUTs and CUTs with previously annotated features, which prompts questions regarding how these transcripts are generated, and whether they exert function. Single-gene studies have shown that transcription of SUTs and CUTs can be functional, through mechanisms involving the generated RNAs or their generation itself. So far, a complete transcriptome architecture including SUTs and CUTs has not been described in any organism. Knowledge about the position and genome-wide arrangement of these transcripts will be instrumental in understanding their function. Here we provide a comprehensive analysis of these transcripts in the context of multiple conditions, a mutant of the exosome machinery and different strain backgrounds of Saccharomyces cerevisiae. We show that both SUTs and CUTs display distinct patterns of distribution at specific locations. Most of the newly identified transcripts initiate from nucleosome-free regions (NFRs) associated with the promoters of other transcripts (mostly protein-coding genes), or from NFRs at the 3′ ends of protein-coding genes. Likewise, about half of all coding transcripts initiate from NFRs associated with promoters of other transcripts. These data change our view of how a genome is transcribed, indicating that bidirectionality is an inherent feature of promoters. Such an arrangement of divergent and overlapping transcripts may provide a mechanism for local spreading of regulatory signals—that is, coupling the transcriptional regulation of neighbouring genes by means of transcriptional interference or histone modification.


Nucleic Acids Research | 2007

Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D

Fabiana Perocchi; Zhenyu Xu; Sandra Clauder-Münster; Lars M. Steinmetz

Recent transcription profiling studies have revealed an unanticipatedly large proportion of antisense transcription across eukaryotic and bacterial genomes. However, the extent and significance of antisense transcripts is controversial partly because experimental artifacts are suspected. Here, we present a method to generate clean genome-wide transcriptome profiles, using actinomycin D (ActD) during reverse transcription. We show that antisense artifacts appear to be triggered by spurious synthesis of second-strand cDNA during reverse transcription reactions. Strand-specific hybridization signals obtained from Saccharomyces cerevisiae tiling arrays were compared between samples prepared with and without ActD. Use of ActD removed about half of the detectable antisense transcripts, consistent with their being artifacts, while sense expression levels and about 200 antisense transcripts were not affected. Our findings thus facilitate a more accurate assessment of the extent and position of antisense transcription, towards a better understanding of its role in cells.


Molecular Systems Biology | 2014

Antisense expression increases gene expression variability and locus interdependency

Zhenyu Xu; Wu Wei; Julien Gagneur; Sandra Clauder-Münster; Miłosz Smolik; Wolfgang Huber; Lars M. Steinmetz

Genome‐wide transcription profiling has revealed extensive expression of non‐coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off’ at low levels of expression for genes with antisense compared to genes without, yet similar expression at maximal induction. By disrupting antisense transcription, we demonstrate that antisense expression confers an on‐off switch on gene regulation for the SUR7 gene. Consistent with this, genes that must respond in a switch‐like manner, such as stress–response and environment‐specific genes, are enriched for antisense expression. In addition, our data provide evidence that antisense expression initiated from bidirectional promoters enables the spreading of regulatory signals from one locus to neighbouring genes. These results indicate a general regulatory effect of antisense expression on sense genes and emphasize the importance of antisense‐initiating regions downstream of genes in models of gene regulation.


Developmental Cell | 2001

The genomic response of the Drosophila embryo to JNK signaling.

Heinrich Jasper; Vladimir Benes; Christian Schwager; Silvia Sauer; Sandra Clauder-Münster; Wilhelm Ansorge; Dirk Bohmann

During Drosophila development, the Jun N-terminal kinase signal transduction pathway regulates morphogenetic tissue closure movements that involve cell shape changes and reorganization of the actin cytoskeleton. We analyzed the genome-wide transcriptional response to activation of the JNK pathway in the Drosophila embryo by serial analysis of gene expression (SAGE) and identified loci encoding cell adhesion molecules and cytoskeletal regulators as JNK responsive genes. The role of one of the upregulated genes, chickadee (chic), encoding a Drosophila profilin, in embryogenesis was analyzed genetically. chic-deficient embryos fail to execute the JNK-mediated cytoskeletal rearrangements during dorsal closure. This study demonstrates a transcriptional mechanism of cytoskeletal regulation and establishes SAGE as an advantageous approach for genomic experiments in the fruitfly.


Genetics | 2008

Sequential Elimination of Major-Effect Contributors Identifies Additional Quantitative Trait Loci Conditioning High-Temperature Growth in Yeast

Himanshu Sinha; Lior David; Renata C. Pascon; Sandra Clauder-Münster; Sujatha Krishnakumar; Michelle Nguyen; Getao Shi; Jed Dean; Ronald W. Davis; Peter J. Oefner; John H. McCusker; Lars M. Steinmetz

Several quantitative trait loci (QTL) mapping strategies can successfully identify major-effect loci, but often have poor success detecting loci with minor effects, potentially due to the confounding effects of major loci, epistasis, and limited sample sizes. To overcome such difficulties, we used a targeted backcross mapping strategy that genetically eliminated the effect of a previously identified major QTL underlying high-temperature growth (Htg) in yeast. This strategy facilitated the mapping of three novel QTL contributing to Htg of a clinically derived yeast strain. One QTL, which is linked to the previously identified major-effect QTL, was dissected, and NCS2 was identified as the causative gene. The interaction of the NCS2 QTL with the first major-effect QTL was background dependent, revealing a complex QTL architecture spanning these two linked loci. Such complex architecture suggests that more genes than can be predicted are likely to contribute to quantitative traits. The targeted backcrossing approach overcomes the difficulties posed by sample size, genetic linkage, and epistatic effects and facilitates identification of additional alleles with smaller contributions to complex traits.


Molecular Systems Biology | 2014

Alternative polyadenylation diversifies post‐transcriptional regulation by selective RNA–protein interactions

Ishaan Gupta; Sandra Clauder-Münster; Bernd Klaus; Aino I Järvelin; Raeka S. Aiyar; Vladimir Benes; Stefan Wilkening; Wolfgang Huber; Vicent Pelechano; Lars M. Steinmetz

Recent research has uncovered extensive variability in the boundaries of transcript isoforms, yet the functional consequences of this variation remain largely unexplored. Here, we systematically discriminate between the molecular phenotypes of overlapping coding and non‐coding transcriptional events from each genic locus using a novel genome‐wide, nucleotide‐resolution technique to quantify the half‐lives of 3′ transcript isoforms in yeast. Our results reveal widespread differences in stability among isoforms for hundreds of genes in a single condition, and that variation of even a single nucleotide in the 3′ untranslated region (UTR) can affect transcript stability. While previous instances of negative associations between 3′ UTR length and transcript stability have been reported, here, we find that shorter isoforms are not necessarily more stable. We demonstrate the role of RNA‐protein interactions in conditioning isoform‐specific stability, showing that PUF3 binds and destabilizes specific polyadenylation isoforms. Our findings indicate that although the functional elements of a gene are encoded in DNA sequence, the selective incorporation of these elements into RNA through transcript boundary variation allows a single gene to have diverse functional consequences.


Nucleic Acids Research | 2014

Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast

Manuele Castelnuovo; Judith B. Zaugg; Elisa Guffanti; Andrea Maffioletti; Jurgi Camblong; Zhenyu Xu; Sandra Clauder-Münster; Lars M. Steinmetz; Nicholas M. Luscombe; Françoise Stutz

Most genomes, including yeast Saccharomyces cerevisiae, are pervasively transcribed producing numerous non-coding RNAs, many of which are unstable and eliminated by nuclear or cytoplasmic surveillance pathways. We previously showed that accumulation of PHO84 antisense RNA (asRNA), in cells lacking the nuclear exosome component Rrp6, is paralleled by repression of sense transcription in a process dependent on the Hda1 histone deacetylase (HDAC) and the H3K4 histone methyl transferase Set1. Here we investigate this process genome-wide and measure the whole transcriptome of various histone modification mutants in a Δrrp6 strain using tiling arrays. We confirm widespread occurrence of potentially antisense-dependent gene regulation and identify three functionally distinct classes of genes that accumulate asRNAs in the absence of Rrp6. These classes differ in whether the genes are silenced by the asRNA and whether the silencing is HDACs and histone methyl transferase-dependent. Among the distinguishing features of asRNAs with regulatory potential, we identify weak early termination by Nrd1/Nab3/Sen1, extension of the asRNA into the open reading frame promoter and dependence of the silencing capacity on Set1 and the HDACs Hda1 and Rpd3 particularly at promoters undergoing extensive chromatin remodelling. Finally, depending on the efficiency of Nrd1/Nab3/Sen1 early termination, asRNA levels are modulated and their capability of silencing is changed.


PLOS Genetics | 2012

Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution

Maïlis Bietenhader; Alexandre Martos; Emmanuel Tetaud; Raeka S. Aiyar; Carole H. Sellem; Roza Kucharczyk; Sandra Clauder-Münster; Marie-France Giraud; François Godard; Bénédicte Salin; Isabelle Sagot; Julien Gagneur; Michelle Déquard-Chablat; Véronique Contamine; Sylvie Hermann-Le Denmat; Annie Sainsard-Chanet; Lars M. Steinmetz; Jean-Paul di Rago

Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms. We have taken a novel approach to relocating mitochondrial genes that utilizes naturally nuclear versions from other organisms. We demonstrate this approach on subunit 9/c of ATP synthase, successfully relocating this gene for the first time in any organism by expressing the ATP9 genes from Podospora anserina in Saccharomyces cerevisiae. This study substantiates the role of protein structure in mitochondrial gene transfer: expression of chimeric constructs reveals that the P. anserina proteins can be correctly imported into mitochondria due to reduced hydrophobicity of the first transmembrane segment. Nuclear expression of ATP9, while permitting almost fully functional oxidative phosphorylation, perturbs many cellular properties, including cellular morphology, and activates the heat shock response. Altogether, our study establishes a novel strategy for allotopic expression of mitochondrial genes, demonstrates the complex adaptations required to relocate ATP9, and indicates a reason that this gene was only transferred to the nucleus during the evolution of multicellular organisms.


Methods of Molecular Biology | 2011

Genome-Wide Transcriptome Analysis in Yeast Using High-Density Tiling Arrays

Lior David; Sandra Clauder-Münster; Lars M. Steinmetz

In the last decade, it became clear that transcription goes far beyond that of protein-coding genes. Most RNA molecules are transcribed from intergenic regions or introns and exhibit much variability in size, expression level, secondary structure, and evolutionary conservation. While for several types of non-coding RNAs some cellular functions have been reported, like for micro-RNAs and small nucleolar RNAs, for most others no indications of function or regulation have so far been found. Therefore, the RNA population inside a cell is diverse and cryptic and, thus, demands powerful methods to study its composition, abundance, and structure. DNA oligonucleotide microarrays have proven to be of great utility to study transcription of genes in various organisms. Recently, due to advancement in microarray technology, tiling microarrays that extend transcription measurement to genomic regions beyond protein-coding genes were designed for several species. The Saccharomyces cerevisiae yeast tiling array contains overlapping probes across the full genomic sequence, with consecutive probes starting every 8 bp on average on each strand, enabling strand-specific measurement of transcription from a full eukaryotic genome. Here, we describe the methods used to extract yeast RNA, convert it into first-strand cDNA, fragment, and label it for hybridization to the tiling array. This protocol will enable researchers not only to study which genes are expressed and to what levels, but also to identify non-coding RNAs and to study the structure of transcripts including their untranslated regions, alternative start, stop, and processing sites. This information will allow understanding their roles inside cells.


Nucleic Acids Research | 2016

INO80 represses osmostress induced gene expression by resetting promoter proximal nucleosomes

Eva Klopf; Heiko A. Schmidt; Sandra Clauder-Münster; Lars M. Steinmetz; Christoph Schüller

Abstract The conserved INO80 chromatin remodeling complex is involved in regulation of DNA damage repair, replication and transcription. It is commonly recruited to the transcription start region and contributes to the establishment of promoter-proximal nucleosomes. We find a substantial influence of INO80 on nucleosome dynamics and gene expression during stress induced transcription. Transcription induced by osmotic stress leads to genome-wide remodeling of promoter proximal nucleosomes. INO80 function is required for timely return of evicted nucleosomes to the 5΄ end of induced genes. Reduced INO80 function in Arp8-deficient cells leads to correlated prolonged transcription and nucleosome eviction. INO80 and the related complex SWR1 regulate incorporation of the H2A.Z isoform at promoter proximal nucleosomes. However, H2A.Z seems not to influence osmotic stress induced gene regulation. Furthermore, we show that high rates of transcription promote INO80 recruitment to promoter regions, suggesting a connection between active transcription and promoter proximal nucleosome remodeling. In addition, we find that absence of INO80 enhances bidirectional promoter activity at highly induced genes and expression of a number of stress induced transcripts. We suggest that INO80 has a direct repressive role via promoter proximal nucleosome remodeling to limit high levels of transcription in yeast.

Collaboration


Dive into the Sandra Clauder-Münster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenyu Xu

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Tetaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Huber

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lior David

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Alexandre Martos

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bénédicte Salin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

François Godard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Sagot

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge