Sandra Corbani
Saint Joseph University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Corbani.
Nature Genetics | 2006
Corinne Stoetzel; Virginie Laurier; Erica E. Davis; Jean Muller; Suzanne Rix; Jose L. Badano; Carmen C. Leitch; Nabiha Salem; Eliane Chouery; Sandra Corbani; Nadine Jalk; Serge Vicaire; Pierre Sarda; Christian P. Hamel; Didier Lacombe; Muriel Holder; Sylvie Odent; Susan Holder; Alice S. Brooks; Nursel Elcioglu; Eduardo Silva; Béatrice Rossillion; Sabine Sigaudy; Thomy de Ravel; Richard Alan Lewis; Bruno Leheup; Alain Verloes; Patrizia Amati-Bonneau; André Mégarbané; Olivier Poch
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous ciliopathy. Although nine BBS genes have been cloned, they explain only 40–50% of the total mutational load. Here we report a major new BBS locus, BBS10, that encodes a previously unknown, rapidly evolving vertebrate-specific chaperonin-like protein. We found BBS10 to be mutated in about 20% of an unselected cohort of families of various ethnic origins, including some families with mutations in other BBS genes, consistent with oligogenic inheritance. In zebrafish, mild suppression of bbs10 exacerbated the phenotypes of other bbs morphants.
Human Mutation | 2009
Marianne Abifadel; Jean-Pierre Rabès; Sélim Jambart; Georges Halaby; Marie-Hélène Gannagé-Yared; Antoine Sarkis; Ghada Beaino; Mathilde Varret; Nabiha Salem; Sandra Corbani; Hermine Aydénian; Claudine Junien; Arnold Munnich; Catherine Boileau
Autosomal dominant hypercholesterolemia (ADH), a major risk for coronary heart disease, is associated with mutations in the genes encoding the low‐density lipoproteins receptor (LDLR), its ligand apolipoprotein B (APOB) or PCSK9 (Proprotein Convertase Subtilin Kexin 9). Familial hypercholesterolemia (FH) caused by mutation in the LDLR gene is the most frequent form of ADH. The incidence of FH is particularly high in the Lebanese population presumably as a result of a founder effect. In this study we characterize the spectrum of the mutations causing FH in Lebanon: we confirm the very high frequency of the LDLR p.Cys681X mutation that accounts for 81.5 % of the FH Lebanese probands recruited and identify other less frequent mutations in the LDLR. Finally, we show that the p.Leu21dup, an in frame insertion of one leucine to the stretch of 9 leucines in exon 1 of PCSK9, known to be associated with lower LDL‐cholesterol levels in general populations, is also associated with a reduction of LDL‐cholesterol levels in FH patients sharing the p.C681X mutation in the LDLR. Thus, by studying for the first time the impact of PCSK9 polymorphism on LDL‐cholesterol levels of FH patients carrying a same LDLR mutation, we show that PCSK9 might constitute a modifier gene in familial hypercholesterolemia.
European Journal of Human Genetics | 2006
Virginie Laurier; Corinne Stoetzel; Jean Muller; Christelle Thibault; Sandra Corbani; Nadine Jalkh; Nabiha Salem; Eliane Chouery; Olivier Poch; Serge Licaire; Jean-Marc Danse; Patricia Amati-Bonneau; Dominique Bonneau; André Mégarbané; Jean-Louis Mandel; Hélène Dollfus
The extensive genetic heterogeneity of Bardet–Biedl syndrome (BBS) is documented by the identification, by classical linkage analysis complemented recently by comparative genomic approaches, of nine genes (BBS1–9) that account cumulatively for about 50% of patients. The BBS genes appear implicated in cilia and basal body assembly or function. In order to find new BBS genes, we performed SNP homozygosity mapping analysis in an extended consanguineous family living in a small Lebanese village. This uncovered an unexpectedly complex pattern of mutations, and led us to identify a novel BBS gene (BBS10). In one sibship of the pedigree, a BBS2 homozygous mutation was identified, while in three other sibships, a homozygous missense mutation was identified in a gene encoding a vertebrate-specific chaperonine-like protein (BBS10). The single patient in the last sibship was a compound heterozygote for the above BBS10 mutation and another one in the same gene. Although triallelism (three deleterious alleles in the same patient) has been described in some BBS families, we have to date no evidence that this is the case in the present family. The analysis of this family challenged linkage analysis based on the expectation of a single locus and mutation. The very high informativeness of SNP arrays was instrumental in elucidating this case, which illustrates possible pitfalls of homozygosity mapping in extended families, and that can be explained by the rather high prevalence of heterozygous carriers of BBS mutations (estimated at one in 50 in Europeans).
American Journal of Medical Genetics Part A | 2005
Valérie Delague; Eliane Chouery; Sandra Corbani; Ismat Ghanem; Suhail Aamar; Judith Fischer; Ephrat Levy-Lahad; J. Andoni Urtizberea; André Mégarbané
Progressive pseudorheumatoid dysplasia (PPD) is a rare autosomal recessive syndrome characterized by the presence of spondyloepiphyseal dysplasia associated with pain, stiffness, and swelling of multiple joints, osteoporosis, and the absence of destructive bone changes. The disorder is caused by mutations of the WISP3 gene located on chromosome 6q22. We hereby report the molecular study of the WISP3 gene in nine unrelated consanguineous families originating from the Middle‐East: three from Lebanon, five from Syria, and one from Palestinian Bedouin descent, all affected with PPD. Five different sequence variations were identified in the WISP3 gene, two of them being new mutations: the c.589G → C transversion at codon 197, responsible for a splicing defect (A197fsX201); and the c.536_537delGT deletion (C179fsX), both in exon 3. In all other families, the affected patients were homozygous for a previously described nonsense mutation, namely c.156C → A (C52X). Interestingly, in the latter families, the C52X mutation was always found associated with a novel c.248G → A (G83E) variation, suggesting the existence of a founder effect.
European Journal of Endocrinology | 2012
Marie-Hélène Gannagé-Yared; Jürgen Klammt; Eliane Chouery; Sandra Corbani; Hala Mégarbané; Joelle Abou Ghoch; Nancy Choucair; Roland Pfäffle; André Mégarbané
BACKGROUND Heterozygous mutations in the IGF1 receptor (IGF1R) gene lead to partial resistance to IGF1 and contribute to intrauterine growth retardation (IUGR) with postnatal growth failure. To date, homozygous mutations of this receptor have not been described. SUBJECT A 13.5-year-old girl born from healthy first-cousin parents presented with severe IUGR and persistent short stature. Mild intellectual impairment, dysmorphic features, acanthosis nigricans, and cardiac malformations were also present. METHODS Auxological and endocrinological profiles were measured. All coding regions of the IGF1R gene including intron boundaries were amplified and directly sequenced. Functional characterization was performed by immunoblotting using patients fibroblasts. RESULTS IGF1 level was elevated at 950NG/ML (+7 S.D.). Fasting glucose level was normal associated with high insulin levels at baseline and during an oral glucose tolerance test. Fasting triglyceride levels were elevated. sequencing of the IGF1R gene led to the identification of a homozygous variation in exon 2: c.119G>T (p.Arg10Leu). As a consequence, IGF1-dependent receptor autophosphorylation and downstream signaling were reduced in patients fibroblasts. Both parents were heterozygous for the mutation. CONCLUSION The homozygous mutation of the IGF1R is associated with severe IUGR, dysmorphic features, and insulin resistance, while both parents were asymptomatic heterozygous carriers of the same mutation.
Molecular Syndromology | 2013
Eliane Chouery; Nancy Choucair; J. Abou Ghoch; S. El Sabbagh; Sandra Corbani; André Mégarbané
We report a 2.3-year-old female patient with global developmental delay, infantile spasms, hypotonia, microcephaly, flat face, full cheeks, macroglossia, highly arched palate, retro-gnathia, narrow ear orifices, and café-au-lait spots. Molecular karyotyping revealed approximately a 1-Mb interstitial deletion of the long arm of one chromosome 12, del(12)(q24.31). The same deletion was identified in her father who presents insulin-dependent diabetes mellitus (IDDM) diagnosed at 14 years. Only one other patient with a similar de novo deletion has been reported previously [Mol Syndromol 2010;1:42-45]. A phenotype-genotype correlation is discussed, and the description of a novel rare microdeletion entity is raised.
Molecular Syndromology | 2010
Sandra Corbani; Eliane Chouery; B. Eid; Nadine Jalkh; J. Abou Ghoch; André Mégarbané
We report on a 10.5-year-old girl with a mild form of campomelic dysplasia. She presented with short stature of prenatal onset, dysmorphic facial features, limitation of supination and pronation of the forearms, dysplastic nails, and bone abnormalities consisting especially of cone-shaped epiphyses of the middle phalanx of the 2nd fingers, brachydactyly and clinodactyly of the middle phalanx of both 5th fingers, short 4th metacarpals, radial and femoral head subluxation, hypoplastic scapulae, humeral and ulnar epiphyseal abnormalities, unossified symphysis pubis, and a significant delay in bone age. Molecular analysis of the SOX9 gene revealed the presence of a de novo missense mutation: p.P170L (c.509C>T). Mild and surviving cases of campomelic dysplasia are reviewed.
Molecular Cytogenetics | 2015
Nancy Choucair; Joelle Abou Ghoch; Sandra Corbani; Pierre Cacciagli; Cécile Mignon-Ravix; Nabiha Salem; Nadine Jalkh; Sandra Sabbagh; Ali Fawaz; Tony Ibrahim; Laurent Villard; André Mégarbané; Eliane Chouery
BackgroundChromosomal microarray analysis (CMA) is currently the most widely adopted clinical test for patients with unexplained intellectual disability (ID), developmental delay (DD), and congenital anomalies. Its use has revealed the capacity to detect copy number variants (CNVs), as well as regions of homozygosity, that, based on their distribution on chromosomes, indicate uniparental disomy or parental consanguinity that is suggestive of an increased probability of recessive disease.ResultsWe screened 149 Lebanese probands with ID/DD and 99 healthy controls using the Affymetrix Cyto 2.7 M and SNP6.0 arrays. We report all identified CNVs, which we divided into groups.Pathogenic CNVs were identified in 12.1% of the patients. We review the genotype/phenotype correlation in a patient with a 1q44 microdeletion and refine the minimal critical regions responsible for the 10q26 and 16q monosomy syndromes.Several likely causative CNVs were also detected, including new homozygous microdeletions (9p23p24.1, 10q25.2, and 8p23.1) in 3 patients born to consanguineous parents, involving potential candidate genes.However, the clinical interpretation of several other CNVs remains uncertain, including a microdeletion affecting ATRNL1. This CNV of unknown significance was inherited from the patient’s unaffected-mother; therefore, additional ethnically matched controls must be screened to obtain enough evidence for classification of this CNV.ConclusionThis study has provided supporting evidence that whole-genome analysis is a powerful method for uncovering chromosomal imbalances, regardless of consanguinity in the parents of patients and despite the challenge presented by analyzing some CNVs.
BioMed Research International | 2015
Raëd Farhat; Géraldine Puissesseau; Ayman El-Seedy; Marie-Claude Pasquet; Catherine Adolphe; Sandra Corbani; André Mégarbané; Alain Kitzis; Véronique Ladeveze
Cystic Fibrosis is the most common recessive autosomal rare disease found in Caucasians. It is caused by mutations on the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) that encodes a protein located on the apical membrane of epithelial cells. c.3909C>G (p.Asn1303Lys, old nomenclature: N1303K) is one of the most common worldwide mutations. This mutation has been found at high frequencies in the Mediterranean countries with the highest frequency in the Lebanese population. Therefore, on the genetic level, we conducted a complete CFTR gene screening on c.3909C>G Lebanese patients. The complex allele c.[744-33GATT(6); 869+11C>T] was always associated with the c.3909C>G mutation in cis in the Lebanese population. In cellulo splicing studies, realized by hybrid minigene constructs, revealed no impact of the c.3909C>G mutation on the splicing process, whereas the associated complex allele induces minor exon skipping.
American Journal of Medical Genetics Part A | 2011
André Mégarbané; Eliane Chouery; Cécile Mignon-Ravix; Sandra Sabbagh; Sandra Corbani; Joelle Abou Ghoch; Nadine Jalkh; Nicolas Lévy; Laurent Villard
We report on two siblings with hypotonia, ambiguous genitalia, microcephaly, ptosis, microretrognathia, thin lips, seizures, absent ossification of pubic rami, and brain abnormalities at the MRI. The two siblings died at 5 and 8 months, respectively. Molecular analysis indicated that SOX9, ARX, and DHCR7 genes were normal. Comparative genomic hybridization (CGH)‐array analysis performed on the younger boy indicated two notable deletions, one on paternally inherited chromosome 4, and one on maternally inherited chromosome 5. The same deletions were found in a normal sister. Differential diagnoses and the possibility of a hitherto unreported syndrome are discussed.