Sandra D. Laufer
University of Lübeck
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra D. Laufer.
Nucleic Acids Research | 2006
Sandra Veldhoen; Sandra D. Laufer; Alexander Trampe; Tobias Restle
Cell-penetrating peptides (CPPs) have evolved as promising new tools to deliver nucleic acids into cells. So far, the majority of these delivery systems require a covalent linkage between carrier and cargo. To exploit the higher flexibility of a non-covalent strategy, we focused on the characterisation of a novel carrier peptide termed MPGα, which spontaneously forms complexes with nucleic acids. Using a luciferase-targeted small interfering RNA (siRNA) as cargo, we optimised the conditions for MPGα-mediated transfection of mammalian cells. In this system, reporter gene activity could be inhibited up to 90% with an IC50 value in the sub-nanomolar range. As a key issue, we addressed the cellular uptake mechanism of MPGα/siRNA complexes applying various approaches. First, transfection of HeLa cells with MPGα/siRNA complexes in the presence of several inhibitors of endocytosis showed a significant reduction of the RNA interference (RNAi) effect. Second, confocal laser microscopy revealed a punctual intracellular pattern rather than a diffuse distribution of fluorescently labelled RNA-cargo. These data provide strong evidence of an endocytotic pathway contributing significantly to the uptake of MPGα/siRNA complexes. Finally, we quantified the intracellular number of siRNA molecules after MPGα-mediated transfection. The amount of siRNA required to induce half maximal RNAi was 10 000 molecules per cell. Together, the combination of methods provided allows for a detailed side by side quantitative analysis of cargo internalisation and related biological effects. Thus, the overall efficiency of a given delivery technique as well as the mechanism of uptake can be assessed.
International Journal of Molecular Sciences | 2008
Sandra Veldhoen; Sandra D. Laufer; Tobias Restle
Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cell-penetrating peptides (CPPs). The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10–30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisense-oligonucleotides), which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls.
RNA Biology | 2012
Ulrike Haas; Georg Sczakiel; Sandra D. Laufer
Single nucleotide polymorphisms (SNPs) in microRNAs (miRNAs) or their target sites (miR-SNPs) within the 3′-UTR of mRNAs are increasingly thought to play a major role in pathological dysregulation of gene expression. Here, we studied the functional role of miR-SNPs on miRNA-mediated post-transcriptional regulation of gene expression. First, analyses were performed on a SNP located in the miR-155 target site within the 3′-UTR of the Angiotensin II type 1 receptor (AGTR1; rs5186, A > C) mRNA. Second, a SNP in the 3′-UTR of the muscle RAS oncogene homolog (MRAS; rs9818870, C > T) mRNA was studied which is located outside of binding sites of miR-195 and miR-135. Using these SNPs we investigated their effects on local RNA structure, on local structural accessibility and on functional miRNA binding, respectively. Systematic computational RNA folding analyses of the allelic mRNAs in either case predicted significant changes of local RNA structure in the vicinity of the cognate miRNA binding sites. Consistently, experimental in vitro probing of RNA showing differential cleavage patterns and reporter gene-based assays indicated functional differences of miRNA-mediated regulation of the two AGTR1 and MRAS alleles. In conclusion, we describe a novel model explaining the functional influence of 3′-UTR-located SNPs on miRNA-mediated control of gene expression via SNP-related changes of local RNA structure in non-coding regions of mRNA. This concept substantially extends the meaning of disease-related SNPs identified in non protein-coding transcribed sequences within or close to miRNA binding sites.
ChemBioChem | 2008
Dina Grohmann; Valentina Corradi; Mira Elbasyouny; Annika Baude; Florian Horenkamp; Sandra D. Laufer; Fabrizio Manetti; Maurizio Botta; Tobias Restle
The enzymatic activities of human immunodeficiency virus type 1 (HIV‐1) reverse transcriptase (RT) are strictly correlated with the dimeric forms of this vital retroviral enzyme. Accordingly, the development of inhibitors targeting the dimerization of RT represents a promising alternative antiviral strategy. Based on mutational studies, we applied a structure‐based ligand design approach generating pharmacophoric models of the large subunit connection subdomain to possibly identify small molecules from the ASINEX database, which might interfere with the RT subunit interaction. Docking studies of the selected compounds identified several candidates, which were initially tested in an in vitro subunit association assay. One of these molecules (MAS0) strongly reduced the association of the two RT subunits p51 and p66. Most notably, the compound simultaneously inhibited both the polymerase as well as the RNase H activity of the retroviral enzyme, following preincubation with t1/2 of about 2 h, indicative of a slow isomerization step. This step most probably represents a shift of the RT dimer equilibrium from an active to an inactive conformation. Taken together, to the best of our knowledge, this study represents the first successful rational screen for a small molecule HIV RT dimerization inhibitor, which may serve as attractive hit compound for the development of novel therapeutic agents.
Archive | 2010
Sandra D. Laufer; Anke Detzer; Georg Sczakiel; Tobias Restle
RNA-based therapeutic strategies are considered as a highly promising alternative to conventional drug development. Among the different classes of oligonucleotide-derived prospective drugs, small interfering RNAs (siRNAs) are of particular interest. However, cellular uptake and subsequent intracellular trafficking to the effector complex (RNA-induced silencing complex; RISC) represent major technical hurdles for the efficacy of these macromolecular drugs. Thus, the development of appropriate delivery systems is an essential requirement to turn these molecules into medicine. In this review, we will focus on two particular auspicious aspects in this context, the phosphorothioate-stimulated uptake of naked siRNA and the use of cell-penetrating peptides as shuttles for a controlled cellular uptake. Moreover, we will present some of the most promising recent approaches for siRNA delivery in vivo, which may help to pave the road to drugs of the future.
Nucleic Acids Research | 2015
Simon Dornseifer; Sarah Willkomm; Rosel Kretschmer-Kazemi Far; Janine Liebschwager; Foteini Beltsiou; Kirsten Frank; Sandra D. Laufer; Thomas Martinetz; Georg Sczakiel; Jens Christian Claussen; Tobias Restle
The discovery of RNA interference (RNAi) gave rise to the development of new nucleic acid-based technologies as powerful investigational tools and potential therapeutics. Mechanistic key details of RNAi in humans need to be deciphered yet, before such approaches take root in biomedicine and molecular therapy. We developed and validated an in silico-based model of siRNA-mediated RNAi in human cells in order to link in vitro-derived pre-steady state kinetic data with a quantitative and time-resolved understanding of RNAi on the cellular level. The observation that product release by Argonaute 2 is accelerated in the presence of an excess of target RNA in vitro inspired us to suggest an associative mechanism for the RNA slicer reaction where incoming target mRNAs actively promote dissociation of cleaved mRNA fragments. This novel associative model is compatible with high multiple turnover rates of RNAi-based gene silencing in living cells and accounts for target mRNA concentration-dependent enhancement of the RNAi machinery.
Chemistry & Biology | 2007
Satoko Yamazaki; Lu Tan; Günter Mayer; Jörg S. Hartig; Jin-Na Song; Sandra Reuter; Tobias Restle; Sandra D. Laufer; Dina Grohmann; Hans-Georg Kräusslich; Jürgen Bajorath; Michael Famulok
Nucleic Acids Research | 2006
Alessandra Mescalchin; Winfried Wünsche; Sandra D. Laufer; Dina Grohmann; Tobias Restle; Georg Sczakiel
Archive | 2006
Dina Grohmann; Sandra D. Laufer; Alessandra Mescalchin; Georg Sczakiel; Tobias Restle; Winfried Wuensche
Archive | 2006
Dina Grohmann; Sandra D. Laufer; Alessandra Mescalchin; Tobias Restle; Georg Sczakiel; Winfried Wünsche