Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra E. Gomez-Mejiba is active.

Publication


Featured researches published by Sandra E. Gomez-Mejiba.


Free Radical Biology and Medicine | 2009

Immuno-spin trapping of protein and DNA radicals: “Tagging” free radicals to locate and understand the redox process

Sandra E. Gomez-Mejiba; Zili Zhai; Hammad Akram; Leesa J. Deterding; Kenneth Hensley; Nataliya Smith; Rheal A. Towner; Kenneth B. Tomer; Ronald P. Mason; Dario C. Ramirez

Biomolecule-centered radicals are intermediate species produced during both reversible (redox modulation) and irreversible (oxidative stress) oxidative modification of biomolecules. These oxidative processes must be studied in situ and in real time to understand the molecular mechanism of cell adaptation or death in response to changes in the extracellular environment. In this regard, we have developed and validated immuno-spin trapping to tag the redox process, tracing the oxidatively generated modification of biomolecules, in situ and in real time, by detecting protein- and DNA-centered radicals. The purpose of this methods article is to introduce and update the basic methods and applications of immuno-spin trapping for the study of redox biochemistry in oxidative stress and redox regulation. We describe in detail the production, detection, and location of protein and DNA radicals in biochemical systems, cells, and tissues, and in the whole animal as well, by using immuno-spin trapping with the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide.


Journal of Biological Chemistry | 2010

Myeloperoxidase-induced genomic DNA-centered radicals

Sandra E. Gomez-Mejiba; Zili Zhai; María Sofía Giménez; Michael T. Ashby; Jaya Chilakapati; Kirk T. Kitchin; Ronald P. Mason; Dario C. Ramirez

Myeloperoxidase (MPO) released by activated neutrophils can initiate and promote carcinogenesis. MPO produces hypochlorous acid (HOCl) that oxidizes the genomic DNA in inflammatory cells as well as in surrounding epithelial cells. DNA-centered radicals are early intermediates formed during DNA oxidation. Once formed, DNA-centered radicals decay by mechanisms that are not completely understood, producing a number of oxidation products that are studied as markers of DNA oxidation. In this study we employed the 5,5-dimethyl-1-pyrroline N-oxide-based immuno-spin trapping technique to investigate the MPO-triggered formation of DNA-centered radicals in inflammatory and epithelial cells and to test whether resveratrol blocks HOCl-induced DNA-centered radical formation in these cells. We found that HOCl added exogenously or generated intracellularly by MPO that has been taken up by the cell or by MPO newly synthesized produces DNA-centered radicals inside cells. We also found that resveratrol passed across cell membranes and scavenged HOCl before it reacted with the genomic DNA, thus blocking DNA-centered radical formation. Taken together our results indicate that the formation of DNA-centered radicals by intracellular MPO may be a useful point of therapeutic intervention in inflammation-induced carcinogenesis.


Nature Protocols | 2007

Immuno-spin trapping analyses of DNA radicals

Dario C. Ramirez; Sandra E. Gomez-Mejiba; Ronald P. Mason

Immuno-spin trapping is a highly sensitive method for detecting DNA radicals in biological systems. This technique involves three main steps: (i) in situ and real-time trapping of DNA radicals with the nitrone spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), thus forming DMPO–DNA nitrone adducts (referred to here as nitrone adducts); (ii) purification of nitrone adducts; and (iii) analysis of nitrone adducts by heterogeneous immunoassays using Abs against DMPO. In experiments, DMPO is added prior to the formation of free radicals. It diffuses easily through all cell compartments and is present when DNA free radicals are formed as a result of oxidative damage. Due to its low toxicity, DMPO can be used in cells at high enough concentrations to out-compete the normal reactions of DNA radicals, thus ensuring a high yield of DNA nitrone adducts. Because both protein and DNA nitrone adducts are formed, it is important that the DNA be pure in order to avoid misinterpretations. Depending on the model under study, this protocol can be completed in as few as 6 h.


Biochemical Journal | 2009

Cu, Zn-Superoxide Dismutase-driven Free Radical Modifications: Copper- and Carbonate Radical Anion-initiated Protein Radical Chemistry

Dario C. Ramirez; Sandra E. Gomez-Mejiba; Jean T. Corbett; Leesa J. Deterding; Kenneth B. Tomer; Ronald P. Mason

The understanding of the mechanism, oxidant(s) involved and how and what protein radicals are produced during the reaction of wild-type SOD1 (Cu,Zn-superoxide dismutase) with H2O2 and their fate is incomplete, but a better understanding of the role of this reaction is needed. We have used immuno-spin trapping and MS analysis to study the protein oxidations driven by human (h) and bovine (b) SOD1 when reacting with H2O2 using HSA (human serum albumin) and mBH (mouse brain homogenate) as target models. In order to gain mechanistic information about this reaction, we considered both copper- and CO3(*-) (carbonate radical anion)-initiated protein oxidation. We chose experimental conditions that clearly separated SOD1-driven oxidation via CO(*-) from that initiated by copper released from the SOD1 active site. In the absence of (bi)carbonate, site-specific radical-mediated fragmentation is produced by SOD1 active-site copper. In the presence of (bi)carbonate and DTPA (diethylenetriaminepenta-acetic acid) (to suppress copper chemistry), CO(*-) produced distinct radical sites in both SOD1 and HSA, which caused protein aggregation without causing protein fragmentation. The CO(*-) produced by the reaction of hSOD1 with H2O2 also produced distinctive DMPO (5,5-dimethylpyrroline-N-oxide) nitrone adduct-positive protein bands in the mBH. Finally, we propose a biochemical mechanism to explain CO(*-) production from CO2, enhanced protein radical formation and protection by (bi)carbonate against H2O2-induced fragmentation of the SOD1 active site. Our present study is important for establishing experimental conditions for studying the molecular mechanism and targets of oxidation during the reverse reaction of SOD1 with H2O2; these results are the first step in analysing the critical targets of SOD1-driven oxidation during pathological processes such as neuroinflammation.


Biochimica et Biophysica Acta | 2014

Immuno-spin trapping from biochemistry to medicine: Advances, challenges, and pitfalls. Focus on protein-centered radicals

Sandra E. Gomez-Mejiba; Zili Zhai; Maria Cecilia Della-Vedova; Marcos D Muñoz; Saurabh Chatterjee; Rheal A. Towner; Kenneth Hensley; Robert A. Floyd; Ronald P. Mason; Dario C. Ramirez

BACKGROUND Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases. SCOPE OF THE REVIEW To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure. MAJOR CONCLUSIONS Because the spin trap has to be present at high enough concentrations in the microenvironment where the radical is formed, the possible effects of the spin trap on gene expression, metabolism and cell physiology have to be considered in the use of IST and in the interpretation of results. These factors have not yet been thoroughly dealt with in the literature. GENERAL SIGNIFICANCE The identification of radicalized proteins during cell/tissue response to stressors will help define their role in the complex cellular response to stressors and pathogenesis; however, the fidelity of spin trapping/immuno-detection and the effects of the spin trap on the biological system should be considered. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Diabetes | 2012

In Vivo Imaging of Immuno-Spin Trapped Radicals With Molecular Magnetic Resonance Imaging in a Diabetic Mouse Model

Rheal A. Towner; Nataliya Smith; Debra Saunders; Michael Henderson; Kristen Downum; Florea Lupu; Robert Silasi-Mansat; Dario C. Ramirez; Sandra E. Gomez-Mejiba; Marcelo G. Bonini; Marilyn Ehrenshaft; Ronald P. Mason

Oxidative stress plays a major role in diabetes. In vivo levels of membrane-bound radicals (MBRs) in a streptozotocin-induced diabetic mouse model were uniquely detected by combining molecular magnetic resonance imaging (mMRI) and immunotrapping techniques. An anti-DMPO (5,5-dimethyl-1-pyrroline N-oxide) antibody (Ab) covalently bound to an albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent (anti-DMPO probe), and mMRI, were used to detect in vivo levels of DMPO-MBR adducts in kidneys, livers, and lungs of diabetic mice, after DMPO administration. Magnetic resonance signal intensities, which increase in the presence of a Gd-based molecular probe, were significantly higher within the livers, kidneys, and lungs of diabetic animals administered the anti-DMPO probe compared with controls. Fluorescence images validated the location of the anti-DMPO probe in excised tissues via conjugation of streptavidin-Cy3, which targeted the probe biotin moiety, and immunohistochemistry was used to validate the presence of DMPO adducts in diabetic mouse livers. This is the first report of noninvasively imaging in vivo levels of MBRs within any disease model. This method can be specifically applied toward diabetes models for in vivo assessment of free radical levels, providing an avenue to more fully understand the role of free radicals in diabetes.


Free Radical Biology and Medicine | 2013

In vivo detection of free radicals using molecular MRI and immuno-spin trapping in a mouse model for amyotrophic lateral sclerosis.

Rheal A. Towner; Nataliya Smith; Debra Saunders; Florea Lupu; Robert Silasi-Mansat; Melinda West; Dario C. Ramirez; Sandra E. Gomez-Mejiba; Marcelo G. Bonini; Ronald P. Mason; Marilyn Ehrenshaft; Kenneth Hensley

Free radicals associated with oxidative stress play a major role in amyotrophic lateral sclerosis (ALS). By combining immuno-spin trapping and molecular magnetic resonance imaging, in vivo trapped radical adducts were detected in the spinal cords of SOD1(G93A)-transgenic (Tg) mice, a model for ALS. For this study, the nitrone spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide) was administered (ip) over 5 days before administration (iv) of an anti-DMPO probe (anti-DMPO antibody covalently bound to an albumin-gadolinium-diethylenetriamine pentaacetic acid-biotin MRI contrast agent) to trap free radicals. MRI was used to detect the presence of the anti-DMPO radical adducts by a significant sustained increase in MR signal intensities (p < 0.05) or anti-DMPO probe concentrations measured from T₁ relaxations (p < 0.01). The biotin moiety of the anti-DMPO probe was targeted with fluorescence-labeled streptavidin to locate the probe in excised tissues. Negative controls included either Tg ALS mice initially administered saline rather than DMPO followed by the anti-DMPO probe or non-Tg mice initially administered DMPO and then the anti-DMPO probe. The anti-DMPO probe was found to bind to neurons via colocalization fluorescence microscopy. DMPO adducts were also confirmed in diseased/nondiseased tissues from animals administered DMPO. Apparent diffusion coefficients from diffusion-weighted images of spinal cords from Tg mice were significantly elevated (p < 0.001) compared to wild-type controls. This is the first report regarding the detection of in vivo trapped radical adducts in an ALS model. This novel, noninvasive, in vivo diagnostic method can be applied to investigate the involvement of free radical mechanisms in ALS rodent models.


Biochimica et Biophysica Acta | 2013

Combined molecular MRI and immuno-spin-trapping for in vivo detection of free radicals in orthotopic mouse GL261 gliomas

Rheal A. Towner; Nataliya Smith; Debra Saunders; Patricia Coutinho de Souza; Leah Henry; Florea Lupu; Robert Silasi-Mansat; Marilyn Ehrenshaft; Ronald P. Mason; Sandra E. Gomez-Mejiba; Dario C. Ramirez

Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p<0.001) in MR signal intensity or a significant decrease (p<0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p<0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin-Gd-DTPA-biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p<0.001) and 3-nitrotyrosine (3-NT) (p<0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model.


Free Radical Biology and Medicine | 2013

In vivo detection of free radicals in mouse septic encephalopathy using molecular MRI and immuno-spin trapping.

Rheal A. Towner; Philippe Garteiser; Fernando A. Bozza; Nataliya Smith; Debra Saunders; Joana C. D’Avila; Flora Magno; Marcus F. Oliveira; Marilyn Ehrenshaft; Florea Lupu; Robert Silasi-Mansat; Dario C. Ramirez; Sandra E. Gomez-Mejiba; Ronald P. Mason; Hugo Faria-Neto

Free radicals are known to play a major role in sepsis. Combined immuno-spin trapping and molecular magnetic resonance imaging (MRI) was used to detect in vivo and in situ levels of free radicals in murine septic encephalopathy after cecal ligation and puncture (CLP). DMPO (5,5-dimethyl pyrroline N-oxide) was injected over 6h after CLP, before administration of an anti-DMPO probe (anti-DMPO antibody bound to albumin-gadolinium-diethylene triamine pentaacetic acid-biotin MRI targeting contrast agent). In vitro assessment of the anti-DMPO probe in oxidatively stressed mouse astrocytes significantly decreased T1 relaxation (p < 0.0001) compared to controls. MRI detected the presence of anti-DMPO adducts via a substantial decrease in %T1 change within the hippocampus, striatum, occipital, and medial cortex brain regions (p < 0.01 for all) in septic animals compared to shams, which was sustained for over 60 min (p < 0.05 for all). Fluorescently labeled streptavidin was used to target the anti-DMPO probe biotin, which was elevated in septic brain, liver, and lungs compared to sham. Ex vivo DMPO adducts (qualitative) and oxidative products, including 4-hydroxynonenal and 3-nitrotyrosine (quantitative, p < 0.05 for both), were elevated in septic brains compared to shams. This is the first study that has reported on the detection of in vivo and in situ levels of free radicals in murine septic encephalopathy.


Life Sciences | 2012

The spin trap 5,5-dimethyl-1-pyrroline N-oxide inhibits lipopolysaccharide-induced inflammatory response in RAW 264.7 cells.

Zili Zhai; Sandra E. Gomez-Mejiba; Hua Zhu; Florea Lupu; Dario C. Ramirez

AIM Exposure of macrophages to lipopolysaccharide (LPS) induces oxidative and inflammatory stresses, which cause cell damage. Antioxidant and anti-inflammatory properties have been attributed to the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), commonly used in free radical analysis, but these aspects of DMPO have been little explored. In this study, we sought to establish the anti-inflammatory activity of DMPO, presumably by removing free radicals which otherwise help activate inflammatory response and damage cells. MAIN METHODS RAW 264.7 macrophages were treated with LPS and/or DMPO for different time points, cell damage, production of inflammatory mediators, inducible nitric oxide synthase (iNOS) expression, NF-κB p65 activation, phosphorylation of MAPKs and Akt, and intracellular reactive oxygen species (ROS) were determined. KEY FINDINGS After cells were treated with LPS and/or DMPO for 24 h, DMPO reduced the LPS-induced inflammatory response as indicated by downregulated iNOS expression and production of inflammatory mediators. Accordingly, DMPO protected cells from LPS-induced cytotoxicity. In order to understand the mechanistic basis of these DMPO effects, the NF-κB p65 activation and the phosphorylation of MAPKs and Akt were examined. We found, by assaying cells treated with LPS and/or DMPO for 15-60 min, that DMPO inhibited the phosphorylation of MAPKs, Akt, and IκBα, and reduced the NF-κB p65 translocation. Furthermore, we demonstrated that DMPO inhibited LPS-induced ROS production. SIGNIFICANCE DMPO showed the anti-inflammatory activity and attenuated LPS-induced cell damage, most likely by reducing ROS production and thus preventing the subsequent inflammatory activation and damage.

Collaboration


Dive into the Sandra E. Gomez-Mejiba's collaboration.

Top Co-Authors

Avatar

Dario C. Ramirez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Ronald P. Mason

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zili Zhai

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Rheal A. Towner

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Florea Lupu

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Nataliya Smith

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

María Sofía Giménez

National University of San Luis

View shared research outputs
Top Co-Authors

Avatar

Debra Saunders

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Marilyn Ehrenshaft

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert Silasi-Mansat

Oklahoma Medical Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge