Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra E. Kelly is active.

Publication


Featured researches published by Sandra E. Kelly.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake

Su Gao; Kimberly P. Kinzig; Susan Aja; Karen A. Scott; Wendy Keung; Sandra E. Kelly; Ken Strynadka; Shigeru Chohnan; Wanli W. Smith; Kellie L.K. Tamashiro; Ellen E. Ladenheim; Gabriele V. Ronnett; Yajun Tu; Morris J. Birnbaum; Gary D. Lopaschuk; Timothy H. Moran

Hypothalamic fatty acid metabolism has recently been implicated in the controls of food intake and energy homeostasis. We report that intracerebroventricular (ICV) injection of leptin, concomitant with inhibiting AMP-activated kinase (AMPK), activates acetyl-CoA carboxylase (ACC), the key regulatory enzyme in fatty acid biosynthesis, in the arcuate nucleus (Arc) and paraventricular nucleus (PVN) in the hypothalamus. Arc overexpression of constitutively active AMPK prevents the Arc ACC activation in response to ICV leptin, supporting the hypothesis that AMPK lies upstream of ACC in leptins Arc intracellular signaling pathway. Inhibiting hypothalamic ACC with 5-tetradecyloxy-2-furoic acid, a specific ACC inhibitor, blocks leptin-mediated decreases in food intake, body weight, and mRNA level of the orexigenic neuropeptide NPY. These results show that hypothalamic ACC activation makes an important contribution to leptins anorectic effects. Furthermore, we find that ICV leptin up-regulates the level of malonyl-CoA (the intermediate of fatty acid biosynthesis) specifically in the Arc and increases the level of palmitoyl-CoA (a major product of fatty acid biosynthesis) specifically in the PVN. The rises of both levels are blocked by 5-tetradecyloxy-2-furoic acid along with the blockade of leptin-mediated hypophagia. These data suggest malonyl-CoA as a downstream mediator of ACC in leptins signaling pathway in the Arc and imply that palmitoyl-CoA, instead of malonyl-CoA, could be an effector in relaying ACC signaling in the PVN. Together, these findings highlight site-specific impacts of hypothalamic ACC activation in leptins anorectic signaling cascade.


Circulation | 2009

Matrix Metalloproteinase-7 and ADAM-12 (a Disintegrin and Metalloproteinase-12) Define a Signaling Axis in Agonist-Induced Hypertension and Cardiac Hypertrophy

Xiang Wang; Fung L. Chow; Tatsujiro Oka; Li Hao; Ana Lopez-Campistrous; Sandra E. Kelly; Stephan Cooper; Jeffrey Odenbach; Barry A. Finegan; Richard Schulz; Zamaneh Kassiri; Gary D. Lopaschuk; Carlos Fernandez-Patron

Background— Excessive stimulation of Gq protein–coupled receptors by cognate vasoconstrictor agonists induces a variety of cardiovascular processes, including hypertension and hypertrophy. Here, we report that matrix metalloproteinase-7 (MMP-7) and a disintegrin and metalloproteinase-12 (ADAM-12) form a novel signaling axis in these processes. Methods and Results— In functional studies, we targeted MMP-7 in rodent models of acute, long-term, and spontaneous hypertension by 3 complementary approaches: (1) Pharmacological inhibition of activity, (2) expression knockdown (by antisense oligodeoxynucleotides and RNA interference), and (3) gene knockout. We observed that induction of acute hypertension by vasoconstrictors (ie, catecholamines, angiotensin II, and the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester) required the posttranscriptional activation of vascular MMP-7. In spontaneously hypertensive rats, knockdown of MMP-7 (by RNA interference) resulted in attenuation of hypertension and stopped development of cardiac hypertrophy. Quantitative reverse-transcription polymerase chain reaction studies in mouse models of MMP-7 knockdown (by RNA interference) and gene knockout revealed that MMP-7 controlled the transcription of ADAM-12, the major metalloproteinase implicated in cardiac hypertrophy. In mice with angiotensin II–induced hypertension and cardiac hypertrophy, myocardial ADAM-12 and downstream hypertrophy marker genes were overexpressed. Knockdown of MMP-7 attenuated hypertension, inhibited ADAM-12 overexpression, and prevented cardiac hypertrophy. Conclusions— Agonist signaling of both hypertension and hypertrophy depends on posttranscriptional and transcriptional mechanisms that involve MMP-7, which is transcriptionally connected with ADAM-12. Approaches targeting this novel MMP-7/ADAM-12 signaling axis could have generic therapeutic potential in hypertensive disorders caused by multiple or unknown agonists.


Diabetes, Obesity and Metabolism | 2007

Synergistic effects of conjugated linoleic acid and chromium picolinate improve vascular function and renal pathophysiology in the insulin‐resistant JCR:LA‐cp rat

Spencer D. Proctor; Sandra E. Kelly; K. L. Stanhope; Peter J. Havel; J.C. Russell

Aims:  Conjugated linoleic acid (CLA) is a natural constituent of dairy products, specific isomers of which have recently been found to have insulin sensitizing and possible antiobesity actions. Chromium is a micronutrient which, as the picolinate (CrP), has been shown to increase insulin sensitivity in animal models, including the JCR:LA‐cp rat. We tested the hypothesis that these agents may have beneficial synergistic effects on the micro‐ and macrovasculopathy associated with hyperinsulinaemia and early type 2 diabetes.


Lipids | 2002

Improvement of vascular dysfunction and blood lipids of insulin-resistant rats by a marine oil-based phytosterol compound.

James C. Russell; H. Stephen Ewart; Sandra E. Kelly; Jaroslav A. Kralovec; Jeffrey L. C. Wright; Peter J. Dolphin

The syndrome that is characterized by obesity, insulin resistance, and hyperlipidemia is increasingly prevalent in all prosperous societies. It is now recognized as a major contributor to cardiovascular disease. Vascular dysfunction in the form of hypercontractility and impaired nitric oxide-mediated relaxation is a significant component of cardiovascular disease, predisposing to ischemic events. The JCR:LA-cp strain of rats exhibits all major aspects of the obesity/insulin resistance syndrome, including vascular dysfunction and ischemic lesions of the heart. Dietary lipid intake may have a marked effect on plasma lipid levels and, potentially, on vascular disease. We have investigated the effects of a novel preparation, ONC101 (a phytosterol esterified with fish oil), on plasma lipids and vascular function in the insulin-resistant JCR:LA-cp rat. Treatment of obese male rats with ONC101 from 8 to 12 wk of age resulted in no change in plasma lipid concentrations at 0.5 g/kg body weight. At the higher dose of 2.6 g/kg, plasma TG fell 50% (1.26 vs. 2.59 mmol/L, P<0.002) and cholesterol esters were significantly reduced (1.34 vs. 1.61 mmol/l, P<0.002). Food intake and body weights were unaffected by ONC101 treatment. At the low dose of 86 mg/kg, the hypercontractility of aortic rings in response to phenylephrine was normalized and the relaxant response to acetylcholine was significantly improved. The results indicate that ONC101 at high doses has significant hypolipidemic effects and, at very low doses, has beneficial effects on endothelial and vascular smooth muscle cell function.


Journal of Cardiovascular Pharmacology | 2004

Vasopeptidase inhibition improves insulin sensitivity and endothelial function in the JCR:LA-cp rat.

James C. Russell; Sandra E. Kelly; Stefan Schäfer

The insulin-resistant, hyperinsulinemic, normoglycemic, and obese JCR:LA-cp rat was used to study the effects of ramipril (an ACE inhibitor) and AVE7688 (a dual inhibitor of ACE and neutral endopeptidases) on insulin sensitivity and vascular function. Both compounds reduced the surge of plasma insulin in a meal tolerance test by approximately 50%. Ramipril had no effect on acetylcholine-induced relaxation but increased the sensitivity to sodium nitroprus-side at low concentrations. AVE7688 significantly reduced the EC50 for acetylcholine to relax phenylephrine-contracted aortic rings. None of the compounds affected the baseline coronary flow and reactive hyperemia. Coronary flow response to bradykinin in AVE7688- and ramipril-treated rat hearts showed a significantly lower EC50 than in control rats. Maximum flow rate was not different between groups. In summary, both ramipril and AVE7688 had significant hypoinsulinemic and insulin-sensitizing effects. Whereas ramipril had limited vascular effects, AVE7688 had more marked beneficial vascular effects, probably of endothelial origin and possibly related to lowered insulin levels.


Atherosclerosis | 2012

ApoA-1 infusion reduces arterial cholesterol and myocardial lesions in a rat model of cardiac dysfunction and insulin resistance

Faye Borthwick; Samantha Warnakula; Rabban Mangat; Richard R. E. Uwiera; James C. Russell; Sandra E. Kelly; Candace Y. Lee; Larry Hryshko; John C.L. Mamo; Kerry-Anne Rye; Gary D. Lopaschuk; Spencer D. Proctor

OBJECTIVE Low plasma high-density lipoprotein cholesterol (HDL-C) concentration is associated with the metabolic syndrome (MetS) and increased prevalence of cardiovascular disease (CVD). Animal and human studies report infusion of apolipoprotein A-1 (apoA-1) can reduce endothelial dysfunction, and/or induce regression of atherosclerosis. However, the direct mechanisms underlying the vascular benefits of either apoA-1 or HDL-C remain unclear. In this study, we assessed the ability of reconstituted HDL (rHDL) to improve vascular complications of MetS, including left ventricular (LV)-hypertrophy, arterial cholesterol deposition and myocardial lesion development. METHODS AND RESULTS Obese insulin resistant (IR) JCR:LA-cp rats were infused with rHDL (0.4 mg/kg) over 3 days before assessing cardiac function (Echocardiography) at days 7 and 50 post-infusion, as well as haematoxylin and eosin staining of myocardial lesions at day 50. Acute ex vivo arterial cholesterol deposition was assessed with acute infusion of rHDL ex-vivo. Infusion of rHDL partially corrected abnormal diastolic compliance (18%; *p<0.05) and improved parameters of cardiac function in IR rats. Further, acute rHDL infusion in carotid vessels reduced remnant lipoprotein associated-cholesterol deposition (30-86%; **p<0.01) ex vivo in IR and male Wistar rats and reduced (41%; *p<0.05) the frequency of early-stage myocardial lesions in IR rats. CONCLUSION Short-term infusion of rHDL may beneficially reduce chronic vascular sequelae of MetS, including temporary improvement in LV-dysfunction, acute reduction of acute arterial cholesterol deposition and the development of early-stage myocardial lesions in the JCR:LA-cp rat.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Rimonabant-mediated changes in intestinal lipid metabolism and improved renal vascular dysfunction in the JCR:LA-cp rat model of prediabetic metabolic syndrome

James C. Russell; Sandra E. Kelly; Abdoulaye Diane; Ye Wang; Rabban Mangat; Susan Novak; Donna F. Vine; Spencer D. Proctor

Rimonabant (SR141716) is a specific antagonist of the cannabinoid-1 receptor. Activation of the receptor initiates multiple effects on central nervous system function, metabolism, and body weight. The hypothesis that rimonabant has protective effects against vascular disease associated with the metabolic syndrome was tested using JCR:LA-cp rats. JCR:LA-cp rats are obese if they are cp/cp, insulin resistant, and exhibit associated micro- and macrovascular disease with end-stage myocardial and renal disease. Treatment of obese rats with rimonabant (10 mg.kg(-1).day(-1), 12-24 wk of age) caused transient reduction in food intake for 2 wk, without reduction in body weight. However, by 4 wk, there was a modest, sustained reduction in weight gain. Glycemic control improved marginally compared with controls, but at the expense of increased insulin concentration. In contrast, rimonabant normalized fasting plasma triglyceride and reduced plasma plasminogen activator inhibitor-1 and acute phase protein haptoglobin in cp/cp rats. Furthermore, these changes were accompanied by reduced postprandial intestinal lymphatic secretion of apolipoprotein B48, cholesterol, and haptoglobin. While macrovascular dysfunction and ischemic myocardial lesion frequency were unaffected by rimonabant treatment, both microalbuminuria and glomerular sclerosis were substantially reduced. In summary, rimonabant has a modest effect on body weight in freely eating obese rats and markedly reduces plasma triglyceride levels and microvascular disease, in part due to changes in intestinal metabolism, including lymphatic secretion of apolipoprotein B48 and haptoglobin. We conclude that rimonabant improves renal disease and intestinal lipid oversecretion associated with an animal model of the metabolic syndrome that appears to be independent of hyperinsulinemia or macrovascular dysfunction.


American Journal of Physiology-endocrinology and Metabolism | 2008

Pair feeding-mediated changes in metabolism: stress response and pathophysiology in insulin-resistant, atherosclerosis-prone JCR:LA-cp rats

James C. Russell; Spencer D. Proctor; Sandra E. Kelly; David N. Brindley

Rats of the JCR:LA-cp strain, which are homozygous for the cp gene (cp/cp), are obese, insulin-resistant, and hyperinsulinemic. They exhibit associated micro- and macrovascular disease and end-stage ischemic myocardial lesions and are highly stress sensitive. We subjected male cp/cp rats to pair feeding (providing the rats each day with the amount of food eaten by matched freely fed animals), a procedure that alters the diurnal feeding pattern, leading to a state of intermittent caloric restriction. Effects on insulin, glucose, and lipid metabolism, response to restraint stress, aortic contractile/relaxant response, and myocardial lesion frequency were investigated. Pair-fed young (12-wk-old) cp/cp rats had lower insulin and glucose levels (basal and following restraint), consistent with increased insulin sensitivity, but a greater increase in plasma nonesterified fatty acids in response to restraint. These effects were unrelated to lipolytic rates in adipose tissue but may be related to reduced fatty acid oxidation in skeletal muscle. Older (24-wk-old) pair-fed cp/cp rats had significantly reduced plasma triglyceride levels, improved micro- and macrovascular function, and reduced severity of ischemic myocardial lesions. These changes indicate a significant amelioration of end-stage disease processes in this animal model and the complexity of metabolic/physiological responses in studies involving alterations in food intake. The effects illustrate the sensitivity of the JCR:LA-cp rat, an animal model for the metabolic syndrome and associated cardiovascular disease, to the environmental and experimental milieu. Similar stress-related mechanisms may play a role in metabolically induced cardiovascular disease in susceptible human beings.


Journal of Cardiovascular Pharmacology | 2005

Insulin-sensitizing and cardiovascular effects of the sodium-hydrogen exchange inhibitor, cariporide, in the JCR: LA-cp rat and db/db mouse.

James C. Russell; Proctor Sd; Sandra E. Kelly; Löhn M; Busch Ae; Stefan Schäfer

The effects of the sodium-hydrogen (Na+/H+) exchange inhibitor cariporide (HOE642), on insulin sensitivity and vascular function were studied in the JCR:LA-cp rat and the db/db mouse. In the insulin-resistant rat, cariporide reduced fasting insulin levels (42%, P < 0.02) and insulin response in a meal tolerance test (50%, P < 0.01), indicating increased insulin sensitivity. The ACE inhibitor, ramipril, used as a reference agent, reduced the insulin response to the meal, but not fasting levels. The EC50 for acetylcholine-mediated relaxation of phenylephrine-precontracted aortic rings was significantly lower in cariporide-treated rats (P < 0.002), but not in ramipril-treated rats. Flow response of the coronary circulation to bradykinin was significantly greater in both cariporide- and ramipril-treated rats, (3-fold decrease in the EC50, P < 0.05). Cariporide-treated hearts were smaller, slower beating, with greater developed LVP. In the obese db/db mouse, chronic treatment with cariporide obviated vascular hypercontractility and improved endothelial function. Thus, cariporide had beneficial effects on the abnormal insulin metabolism and associated vascular dysfunction in the JCR:LA-cp insulin-resistant rat, which develops advanced cardiovascular disease and ischemic myocardial lesions. It also improved vascular function in a similar mouse model of insulin resistance. These effects were markedly greater than those of ramipril.


British Journal of Pharmacology | 2009

Irbesartan-mediated reduction of renal and cardiac damage in insulin resistant JCR : LA-cp rats.

J.C. Russell; Sandra E. Kelly; Donna F. Vine; Spencer D. Proctor

Background and purpose:  Angiotensin II receptor antagonists (ARBs), originally developed for antihypertensive properties, have pleiotropic effects including direct vascular actions. We tested the hypothesis that the ARB irbesartan would be effective against micro‐ and macrovascular complications of the prediabetic metabolic syndrome using the obese, insulin‐resistant JCR : LA‐cp rat that exhibits micro‐ and macrovascular disease with ischaemic myocardial lesions and renal disease.

Collaboration


Dive into the Sandra E. Kelly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge