Sandra Eibenberger
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Eibenberger.
Nature Communications | 2011
Stefan Gerlich; Sandra Eibenberger; Mathias Tomandl; Stefan Nimmrichter; Paul J. Fagan; Jens Tüxen; Marcel Mayor; Markus Arndt
The wave nature of matter is a key ingredient of quantum physics and yet it defies our classical intuition. First proposed by Louis de Broglie a century ago, it has since been confirmed with a variety of particles from electrons up to molecules. Here we demonstrate new high-contrast quantum experiments with large and massive tailor-made organic molecules in a near-field interferometer. Our experiments prove the quantum wave nature and delocalization of compounds composed of up to 430 atoms, with a maximal size of up to 60 Å, masses up to m=6,910 AMU and de Broglie wavelengths down to λdB=h/mv≃1 pm. We show that even complex systems, with more than 1,000 internal degrees of freedom, can be prepared in quantum states that are sufficiently well isolated from their environment to avoid decoherence and to show almost perfect coherence.
Physical Chemistry Chemical Physics | 2013
Sandra Eibenberger; Stefan Gerlich; Markus Arndt; Marcel Mayor; Jens Tüxen
The quantum superposition principle, a key distinction between quantum physics and classical mechanics, is often perceived as a philosophical challenge to our concepts of reality, locality or space-time since it contrasts with our intuitive expectations with experimental observations on isolated quantum systems. While we are used to associating the notion of localization with massive bodies, quantum physics teaches us that every individual object is associated with a wave function that may eventually delocalize by far more than the bodys own extension. Numerous experiments have verified this concept at the microscopic scale but intuition wavers when it comes to delocalization experiments with complex objects. While quantum science is the uncontested ideal of a physical theory, one may ask if the superposition principle can persist on all complexity scales. This motivates matter-wave diffraction and interference studies with large compounds in a three-grating interferometer configuration which also necessitates the preparation of high-mass nanoparticle beams at low velocities. Here we demonstrate how synthetic chemistry allows us to prepare libraries of fluorous porphyrins which can be tailored to exhibit high mass, good thermal stability and relatively low polarizability, which allows us to form slow thermal beams of these high-mass compounds, which can be detected using electron ionization mass spectrometry. We present successful superposition experiments with selected species from these molecular libraries in a quantum interferometer, which utilizes the diffraction of matter-waves at an optical phase grating. We observe high-contrast quantum fringe patterns of molecules exceeding a mass of 10,000 amu and having 810 atoms in a single particle.
New Journal of Physics | 2011
Sandra Eibenberger; Stefan Gerlich; Markus Arndt; Jens Tüxen; Marcel Mayor
We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C25H20 is rather rigid, its larger derivative C49H16F52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole moment by contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.
Physical Review A | 2010
Michael Gring; Stefan Gerlich; Sandra Eibenberger; Stefan Nimmrichter; Tarik Berrada; Markus Arndt; Hendrik Ulbricht; Marcel Müri; Marcel Mayor; Marcus Böckmann; Nikos L. Doltsinis
We investigate the influence of thermally activated internal molecular dynamics on the phase shifts of matter waves inside a molecule interferometer. While de Broglie physics generally describes only the center-of-mass motion of a quantum object, our experiment demonstrates that the translational quantum phase is sensitive to dynamic conformational state changes inside the diffracted molecules. The structural flexibility of tailor-made organic particles is sufficient to admit a mixture of strongly fluctuating dipole moments. These modify the electric susceptibility and through this the quantum interference pattern in the presence of an external electric field. Detailed molecular dynamics simulations combined with density-functional theory allow us to quantify the time-dependent structural reconfigurations and to predict the ensemble-averaged square of the dipole moment which is found to be in good agreement with the interferometric result. The experiment thus opens a different perspective on matter wave interferometry, as we demonstrate here that it is possible to collect structural information about molecules even if they are delocalized over more than 100 times their own diameter.
Chemical Communications | 2010
Jens Tüxen; Stefan Gerlich; Sandra Eibenberger; Markus Arndt; Marcel Mayor
Matter waves, as introduced by de Broglie in 1923 (L. de Broglie, Nature, 1923, 112, 540), are a fundamental quantum phenomenon, describing the delocalized center of mass motion of massive bodies and we show here their sensitivity to the molecular structure of constitutional isomers.
Physical Review Letters | 2017
Sandra Eibenberger; John M. Doyle; David Patterson
State-selective enantiomeric excess is realized using microwave-driven coherent population transfer. The method selectively promotes either R or S molecules to a higher rotational state by phase-controlled microwave pulses that drive electric-dipole allowed rotational transitions. We demonstrate the enantiomer-specific state transfer method using enantiopure samples of 1,2-propanediol. This method of state-specific enantiomeric enrichment can be applied to a large class of asymmetric, chiral molecules that can be vaporized and cooled to the point where rotationally resolved spectroscopy is possible, including molecules that rapidly racemize. The rapid chiral switching demonstrated here allows for new approaches in high-precision spectroscopic searches for parity violation in chiral molecules.
Physical Review Letters | 2014
Sandra Eibenberger; Xiaxi Cheng; J. P. Cotter; Markus Arndt
We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates many problems related to photon cycling, state mixing, photobleaching, photoinduced heating, fragmentation, and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters, and nanoparticles.
ChemPhysChem | 2014
Julia Piskorski; David Patterson; Sandra Eibenberger; John M. Doyle
We create and study trans-Stilbene and Nile Red in a cryogenic (7 K) cell with a low density helium buffer gas. No molecule-helium cluster formation is observed, indicating limited atom-molecule sticking in this system. We place an upper limit of 5 % on the population of clustered He-trans-Stilbene, consistent with a measured He-molecule collisional residence time of less than 1 μs. With its very low energy torsional modes, trans-Stilbene is less rigid than any molecule previously buffer-gas-cooled into the Kelvin regime. We also report cooling and gas phase visible spectroscopy of Nile Red, a much larger molecule. Our data suggest that buffer gas cooling will be feasible for a variety of small biological molecules.
Nature Communications | 2015
J. P. Cotter; Sandra Eibenberger; Lukas Mairhofer; Xiaxi Cheng; Peter Asenbaum; Markus Arndt; Klaudia Walter; Stefan Nimmrichter
Matter-wave interferometry can be used to probe the foundations of physics and to enable precise measurements of particle properties and fundamental constants. It relies on beam splitters that coherently divide the wave function. In atom interferometers, such elements are often realised using lasers by exploiting the dipole interaction or through photon absorption. It is intriguing to extend these ideas to complex molecules where the energy of an absorbed photon can rapidly be redistributed across many internal degrees of freedom. Here, we provide evidence that center-of-mass coherence can be maintained even when the internal energy and entropy of the interfering particle are substantially increased by absorption of photons from a standing light wave. Each photon correlates the molecular center-of-mass wave function with its internal temperature and splits it into a superposition with opposite momenta in addition to the beam-splitting action of the optical dipole potential.
Angewandte Chemie | 2016
Garrett Drayna; Christian Hallas; Kenneth Wang; Sérgio R. Domingos; Sandra Eibenberger; John M. Doyle; David Patterson
Cooling molecules in the gas phase is important for precision spectroscopy, cold molecule physics, and physical chemistry. Measurements of conformational relaxation cross sections shed important light on potential energy surfaces and energy flow within a molecule. However, gas-phase conformational cooling has not been previously observed directly. In this work, we directly observe conformational dynamics of 1,2-propanediol in cold (6 K) collisions with atomic helium using microwave spectroscopy and buffer-gas cooling. Precise knowledge and control of the collisional environment in the buffer-gas allows us to measure the absolute collision cross-section for conformational relaxation. Several conformers of 1,2-propanediol are investigated and found to have relaxation cross-sections with He ranging from σ=4.7(3.0)×10(-18) cm(2) to σ>5×10(-16) cm(2). Our method is applicable to a broad class of molecules and could be used to provide information about the potential energy surfaces of previously uninvestigated molecules.