Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Fok is active.

Publication


Featured researches published by Sandra Fok.


Cancer Research | 2008

Snail Up-regulates Proinflammatory Mediators and Inhibits Differentiation in Oral Keratinocytes

J. Guy Lyons; Vyomesh Patel; Naomi C. Roue; Sandra Fok; Lilian L. Soon; Gary M. Halliday; J. Silvio Gutkind

The transcriptional repressor Snail2 is overexpressed in head and neck squamous cell carcinomas (HNSCC) relative to nonmalignant head and neck mucosal epithelium, and in locally recurrent relative to nonrecurrent HNSCCs. We investigated the mechanisms by which Snails might contribute to the pathogenesis of HNSCCs using cell biological and molecular analyses. Oral keratinocytes that expressed Snails acquired an enhanced ability to attract monocytes and to invade a dense interstitial collagen matrix. They were also found to up-regulate production of proinflammatory cytokines and cyclooxygenase-2 (COX2), which have previously been shown to correlate with malignancy. Induction of nuclear factor-kappaB transcriptional activity by Snails was weak and not sufficient to account for the elevated levels of COX2, interleukin (IL)-6, IL8, or CXCL1. In addition, expression of Snails in oral keratinocytes impaired desquamation in vitro and strongly repressed expression of both ELF3 and matriptase-1, which play important roles in the terminal differentiation of keratinocytes. Reexpression of matriptase-1 in Snail-expressing cells partially rescued desquamation. This implicates Snails as contributing to malignancy both at the early stages, by impeding terminal differentiation, and at later stages, when invasion and inflammation are important.


Schizophrenia Bulletin | 2014

Partial genetic deletion of neuregulin 1 modulates the effects of stress on sensorimotor gating, dendritic morphology, and HPA axis activity in adolescent mice.

Tariq W. Chohan; Aurelie A. Boucher; Jarrah R. Spencer; Mustafa S. Kassem; Areeg Hamdi; Tim Karl; Sandra Fok; Max R. Bennett; Jonathon C. Arnold

Stress has been linked to the pathogenesis of schizophrenia. Genetic variation in neuregulin 1 (NRG1) increases the risk of developing schizophrenia and may help predict which high-risk individuals will transition to psychosis. NRG1 also modulates sensorimotor gating, a schizophrenia endophenotype. We used an animal model to demonstrate that partial genetic deletion of Nrg1 interacts with stress to promote neurobehavioral deficits of relevance to schizophrenia. Nrg1 heterozygous (HET) mice displayed greater acute stress-induced anxiety-related behavior than wild-type (WT) mice. Repeated stress in adolescence disrupted the normal development of higher prepulse inhibition of startle selectively in Nrg1 HET mice but not in WT mice. Further, repeated stress increased dendritic spine density in pyramidal neurons of the medial prefrontal cortex (mPFC) selectively in Nrg1 HET mice. Partial genetic deletion of Nrg1 also modulated the adaptive response of the hypothalamic-pituitary-adrenal axis to repeated stress, with Nrg1 HET displaying a reduced repeated stress-induced level of plasma corticosterone than WT mice. Our results demonstrate that Nrg1 confers vulnerability to repeated stress-induced sensorimotor gating deficits, dendritic spine growth in the mPFC, and an abberant endocrine response in adolescence.


Biophysical Journal | 2008

Planar microfluidic chamber for generation of stable and steep chemoattractant gradients.

Sandra Fok; Peter Domachuk; Gary Rosengarten; Norbert Krause; Filip Braet; Benjamin J. Eggleton; Lilian L. Soon

The extracellular availability of growth factors, hormones, chemokines, and neurotransmitters under gradient conditions is required for directional cellular responses such as migration, axonal pathfinding, and tissue patterning. These responses are, in turn, important in disease and developmental processes. This article addresses critical barriers toward devising a chemotaxis assay that is broadly applicable for different kinds of cancer cells through the design of a microfluidic chamber that produces a steep gradient of chemoattractant. Photolithography was used to create microchannels for chemoattractant delivery, flow diversion barriers/conduits, and small outlets in the form of apertures. The 1-microm apertures were made at the active surface by uncapping a thin (1.5 microm) layer of AZ1518. This process also created a vertical conduit that diverted the flow such that it occurred perpendicularly to the active, experimental surface where the gradients were measured. The other side of the vertical conduit opened to underlying 20-microm deep channels that carried microfluidic flows of tracer dyes/growth factors. Modeled data using computational fluid dynamics produced gradients that were steep along the horizontal, active surface. This simulation mirrors empirically derived gradients obtained from the flow analyses of fluorescent compounds. The open chamber contains a large buffer volume, which prevents chemoattractant saturation and permits easy cell and compound manipulation. The technique obviates the use of membranes or laminar flow that may hinder imaging, rinsing steps, cell seeding, and treatment. The utility of the chamber in the study of cell protrusion, an early step during chemotaxis, was demonstrated by growing cancer cells in the chamber, inducing a chemoattractant gradient using compressed air at 0.7 bar, and performing time-lapse microscopy. Breast cancer cells responded to the rapidly developed and stable gradient of epidermal growth factor by directing centroid positions toward the gradient and by forming a leading edge at a speed of 0.45 microm/min.


BMC Cancer | 2006

Rapid chemokinetic movement and the invasive potential of lung cancer cells; a functional molecular study

Kam Meng Tchou-Wong; Sandra Fok; Jeffrey S. Rubin; Fiona J. Pixley; John Condeelis; Filip Braet; William N. Rom; Lilian L. Soon

BackgroundNon-small cell lung cancer is the most common cause of early casualty from malignant disease in western countries. The heterogeneous nature of these cells has been identified by histochemical and microarray biomarker analyses. Unfortunately, the morphological, molecular and biological variation within cell lines used as models for invasion and metastasis are not well understood. In this study, we test the hypothesis that heterogeneous cancer cells exhibit variable motility responses such as chemokinesis and chemotaxis that can be characterized molecularly.MethodsA subpopulation of H460 lung cancer cells called KINE that migrated under chemokinetic (no gradient) conditions was harvested from Boyden chambers and cultured. Time-lapsed microscopy, immunofluorescence microscopy and microarray analyses were then carried out comparing chemokinetic KINE cells with the unselected CON cell population.ResultsTime-lapsed microscopy and analysis showed that KINE cells moved faster but less directionally than the unselected control population (CON), confirming their chemokinetic character. Of note was that chemokinetic KINE cells also chemotaxed efficiently. KINE cells were less adhesive to substrate than CON cells and demonstrated loss of mature focal adhesions at the leading edge and the presence of non-focalized cortical actin. These characteristics are common in highly motile amoeboid cells that may favour faster motility speeds. KINE cells were also significantly more invasive compared to CON. Gene array studies and real-time PCR showed the downregulation of a gene called, ROM, in highly chemokinetic KINE compared to mainly chemotactic CON cells. ROM was also reduced in expression in a panel of lung cancer cell lines compared to normal lung cells.ConclusionThis study shows that cancer cells that are efficient in both chemokinesis and chemotaxis demonstrate high invasion levels. These cells possess different morphological, cytoskeletal and adhesive properties from another population that are only efficient at chemotaxis, indicating a loss in polarity. Understanding the regulation of polarity in the context of cell motility is important in order to improve control and inhibition of invasion and metastasis.


Journal of Alzheimer's Disease | 2014

Cofilin Rods and Aggregates Concur with Tau Pathology and the Development of Alzheimer's Disease

Tasnim Rahman; Danielle S. Davies; R. K. Tannenberg; Sandra Fok; Claire E. Shepherd; P. R. Dodd; Karen M. Cullen; Claire Goldsbury

BACKGROUND Imaging of human brain as well as cellular and animal models has highlighted a role for the actin cytoskeleton in the development of cell pathology in Alzheimers disease (AD). Rods and aggregates of the actin-associated protein cofilin are abundant in grey matter of postmortem AD brain and rods are found inside neurites in animal and cell models of AD. OBJECTIVE We sought further understanding of the significance of cofilin rods/aggregates to the disease process: Do rods/aggregates correlate with AD progression and the development of hallmark neurofibrillary tangles and neuropil threads? Are cofilin rods/aggregates found in the same neurites as hyperphosphorylated tau? METHODS The specificity of rods/aggregates to AD compared with general aging and their spatial relationship to tau protein was examined in postmortem human hippocampus, inferior temporal cortex, and anterior cingulate cortex. RESULTS The presence of cofilin rods/aggregates correlated with the extent of tau pathology independent of patient age. Densities of rods/aggregates were fourfold greater in AD compared with aged-matched control brains and rods/aggregates were significantly larger in AD brain. We did not find evidence for our hypothesis that intracellular cofilin rods are localized to tau-positive neuropil threads. Instead, data suggest the involvement of microglia in the clearance of cofilin rods/aggregates and/or in their synthesis in and around amyloid plaques and surrounding neuropil. CONCLUSION Cofilin rods and aggregates signify events initiated early in the pathological cascade. Further definition of the mechanisms leading to their formation in the human brain will provide insights into the cellular causes of AD.


Schizophrenia Bulletin | 2018

Neuregulin 1 Deficiency Modulates Adolescent Stress-Induced Dendritic Spine Loss in a Brain Region-Specific Manner and Increases Complement 4 Expression in the Hippocampus

David J. Clarke; Tariq W. Chohan; Mustafa S. Kassem; Kristie Leigh Smith; Rose Chesworth; Tim Karl; Michael Kuligowski; Sandra Fok; Max R. Bennett; Jonathon C. Arnold

One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.


Journal of Neuroscience Methods | 2018

A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue

Mustafa S. Kassem; Sandra Fok; Kristie Leigh Smith; Michael Kuligowski; Bernard W. Balleine

BACKGROUND High resolution neuronal information is extraordinarily useful in understanding the brains functionality. The development of the Golgi-Cox stain allowed observation of the neuron in its entirety with unrivalled detail. Tissue clearing techniques, e.g., CLARITY and CUBIC, provide the potential to observe entire neuronal circuits intact within tissue and without previous restrictions with regard to section thickness. NEW METHOD Here we describe an improved Golgi-Cox stain method, optimised for use with CLARITY and CUBIC that can be used in both fresh and fixed tissue. RESULTS Using this method, we were able to observe neurons in their entirety within a fraction of the time traditionally taken to clear tissue (48h). We were also able to show for the first-time that Golgi stained tissue is fluorescent when visualized using a multi-photon microscope, allowing us to image synaptic spines with a detail previously unachievable. COMPARISON WITH EXISTING METHODS These novel methods provide cheap and easy to use techniques to investigate the morphology of cellular processes in the brain at a new-found depth, speed, utility and detail, without previous restrictions of time, tissue type and section thickness. CONCLUSIONS This is the first application of a Golgi-Cox stain to cleared brain tissue, it is investigated and discussed in detail, describing different methodologies that may be used, a comparison between the different clearing techniques and lastly the novel interaction of these techniques with this ultra-rapid stain.


PLOS ONE | 2017

Functional characterisation of filamentous actin probe expression in neuronal cells

Shrujna Patel; Sandra Fok; Holly Stefen; Tamara Tomanić; Esmeralda Parić; Rosanna Herold; Merryn Brettle; Aleksandra Djordjevic; Thomas Fath; Friedrich Frischknecht

Genetically encoded filamentous actin probes, Lifeact, Utrophin and F-tractin, are used as tools to label the actin cytoskeleton. Recent evidence in several different cell types indicates that these probes can cause changes in filamentous actin dynamics, altering cell morphology and function. Although these probes are commonly used to visualise actin dynamics in neurons, their effects on axonal and dendritic morphology has not been systematically characterised. In this study, we quantitatively analysed the effect of Lifeact, Utrophin and F-tractin on neuronal morphogenesis in primary hippocampal neurons. Our data show that the expression of actin-tracking probes significantly impacts on axonal and dendrite growth these neurons. Lifeact-GFP expression, under the control of a pBABE promoter, caused a significant decrease in total axon length, while another Lifeact-GFP expression, under the control of a CAG promoter, decreased the length and complexity of dendritic trees. Utr261-EGFP resulted in increased dendritic branching but Utr230-EGFP only accumulated in cell soma, without labelling any neurites. Lifeact-7-mEGFP and F-tractin-EGFP in a pEGFP-C1 vector, under the control of a CMV promoter, caused only minor changes in neuronal morphology as detected by Sholl analysis. The results of this study demonstrate the effects that filamentous actin tracking probes can have on the axonal and dendritic compartments of neuronal cells and emphasise the care that must be taken when interpreting data from experiments using these probes.


Frontiers in Cellular Neuroscience | 2017

Developmental Profiling of Tropomyosin Expression in Mouse Brain Reveals Tpm4.2 as the Major Post-synaptic Tropomyosin in the Mature Brain

Alexandra K. Suchowerska; Sandra Fok; Holly Stefen; Peter Gunning; Edna C. Hardeman; John M. Power; Thomas Fath

Nerve cell connections, formed in the developing brain of mammals, undergo a well-programmed process of maturation with changes in their molecular composition over time. The major structural element at the post-synaptic specialization is the actin cytoskeleton, which is composed of different populations of functionally distinct actin filaments. Previous studies, using ultrastructural and light imaging techniques have established the presence of different actin filament populations at the post-synaptic site. However, it remains unknown, how these different actin filament populations are defined and how their molecular composition changes over time. In the present study, we have characterized changes in a core component of actin filaments, the tropomyosin (Tpm) family of actin-associated proteins from embryonal stage to the adult stage. Using biochemical fractionation of mouse brain tissue, we identified the tropomyosin Tpm4.2 as the major post-synaptic Tpm. Furthermore, we found age-related differences in the composition of Tpms at the post-synaptic compartment. Our findings will help to guide future studies that aim to define the functional properties of actin filaments at different developmental stages in the mammalian brain.


Current Biology | 2018

The bilateral prefronto-striatal pathway is necessary for learning new goal-directed actions

Genevra Hart; Laura A. Bradfield; Sandra Fok; Billy Chieng; Bernard W. Balleine

The acquisition of new goal-directed actions requires the encoding of action-outcome associations. At a neural level, this encoding has been hypothesized to involve a prefronto-striatal circuit extending between the prelimbic cortex (PL) and the posterior dorsomedial striatum (pDMS); however, no research identifying this pathway with any precision has been reported. We started by mapping the prelimbic input to the dorsal and ventral striatum using a combination of retrograde and anterograde tracing with CLARITY and established that PL-pDMS projections share some overlap with projections to the nucleus accumbens core (NAc) in rats. We then tested whether each of these pathways were functionally required for goal-directed learning; we used a pathway-specific dual-virus chemogenetic approach to selectively silence pDMS-projecting or NAc-projecting PL neurons during instrumental training and tested rats for goal-directed action. We found that silencing PL-pDMS projections abolished goal-directed learning, whereas silencing PL-NAc projections left goal-directed learning intact. Finally, we used a three-virus approach to silence bilateral and contralateral pDMS-projecting PL neurons and again blocked goal-directed learning. These results establish that the acquisition of new goal-directed actions depends on the bilateral PL-pDMS pathway driven by intratelencephalic cortical neurons.

Collaboration


Dive into the Sandra Fok's collaboration.

Top Co-Authors

Avatar

Holly Stefen

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Fath

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard W. Balleine

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Guy Lyons

Royal Prince Alfred Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge