Sandra Franz
Leipzig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Franz.
Lupus | 2008
Luis E. Munoz; C.C.A.W. van Bavel; Sandra Franz; J.H.M. Berden; Martin J. Herrmann; J. van der Vlag
Systemic lupus erythematosus (SLE) is a prototype inflammatory autoimmune disease resulting from autoimmune responses against nuclear autoantigens. During apoptosis many lupus autoantigens congregate inside the cells and are susceptible to modifications. Modified nuclear constituents are considered foreign and dangerous. Therefore, apoptotic cells have to has to be efficiently removed to avoid the accumulation of apoptotic debris and the subsequently development of autoimmune responses. Hence, apoptosis and clearance of apoptotic cells/material are considered key processes in the aetiology of SLE. Clearance deficiencies may account for the development of autoimmunity by inducing a loss of tolerance in lymphoid tissues. Furthermore, phagocytosis of apoptotic cells may lead to a pro-inflammatory response in the presence of autoantibodies. This may sustain inflammatory conditions and the pathology found in overt lupus.
Annals of the Rheumatic Diseases | 2008
Roland Axmann; S Herman; Mario M. Zaiss; Sandra Franz; Karin Polzer; Jochen Zwerina; Martin J. Herrmann; Josef S Smolen; Georg Schett
CTLA-4 is a regulator of co-stimulation and inhibits the activation of T cells through interfering with the interaction of CD80/86 on antigen-presenting cells with CD28 on T cells. CTLA-4 binds to the surface of antigen-presenting cells, such as dendritic cells and monocytes through CD80/86. Monocytes can differentiate in osteoclasts, the primary bone resorbing cells. Herein, we investigated whether the binding of CTLA-4 affects the differentiation of monocytes into osteoclasts in vitro and vivo. We show that CTLA-4 dose-dependently inhibits RANKL- as well as tumour necrosis factor (TNF)-mediated osteoclastogenesis in vitro without the presence of T cells. Furthermore, CTLA-4 was effective in inhibiting TNF-induced osteoclast formation in a non-T cell dependent TNF-induced model of arthritis as well as the formation of inflammatory bone erosion in vivo. These data suggest that CTLA-4 is an anti-osteoclastogenic molecule that directly binds osteoclast precursor cells and inhibits their differentiation. These findings are an attractive explanation for the anti-erosive effect of abatacept, a CTLA-4 immunoglobulin fusion protein used for the treatment of rheumatoid arthritis.
Journal of Molecular Medicine | 2012
Juliane Salbach; Tilman D. Rachner; Martina Rauner; Ute Hempel; Ulf Anderegg; Sandra Franz; Jan-Christoph Simon; Lorenz C. Hofbauer
To meet the growing need for tissue replacement materials for our aging population, the development of new adaptive biomaterials is essential. The tissues with the highest demand for implant materials are skin and bone. These tissues share various similarities, including signaling pathways and extracellular matrix composition. Glycosaminoglycans such as hyaluronan and chondroitin sulfate are the major organic extracellular matrix components. They modulate the attraction of skin and bone precursor cells and their subsequent differentiation and gene expression and regulate the action of proteins essential to bone and skin regeneration. The precise action of glycosaminoglycans varies according to their structural composition mainly in respect to the degree of sulfation and polymer length. Changes in the glycosaminoglycan composition are frequently seen in physiological and pathological remodeling processes, such as bone formation or scaring. Here, we review the current state of knowledge of how the most common glycosaminoglycan, chondroitin sulfate and hyaluronan, interact with bone and skin cells, and summarize their potential in tissue engineering for skeletal and skin diseases.
Journal of Immunology | 2009
Aisleen McColl; Stylianos Bournazos; Sandra Franz; Mauro Perretti; B. Paul Morgan; Christopher Haslett; Ian Dransfield
During resolution of an inflammatory response, recruited neutrophil granulocytes undergo apoptosis and are removed by tissue phagocytes before induction of secondary necrosis without provoking proinflammatory cytokine production and release. Promotion of physiological neutrophil clearance mechanisms may represent a viable therapeutic strategy for the treatment of inflammatory or autoimmune diseases in which removal of apoptotic cells is impaired. The mechanism underlying enhancement of macrophage capacity for phagocytosis of apoptotic cells by the powerful anti-inflammatory drugs of the glucocorticoid family has remained elusive. In this study, we report that human monocyte-derived macrophages cultured in the presence of dexamethasone exhibit augmented capacity for phagocytosis of membrane-intact, early apoptotic cells only in the presence of a serum factor. Our results eliminate a role for a number of potential opsonins, including complement, pentraxin-3, and fibronectin. Using ion-exchange and gel filtration chromatography, we identified a high molecular mass serum fraction containing C4-binding protein and protein S responsible for the augmentation of phagocytosis of apoptotic neutrophils. Because the apoptotic neutrophils used in this study specifically bind protein S, we suggest that glucocorticoid treatment of macrophages induces a switch to a protein S-dependent apoptotic cell recognition mechanism. Consistent with this suggestion, pretreatment of macrophages with Abs to Mer tyrosine kinase, a member of the Tyro3/Axl/Mer family of receptor tyrosine kinases, prevented glucocorticoid augmentation of phagocytosis. Induction of a protein S/Mer tyrosine kinase-dependent apoptotic cell clearance pathway may contribute to the potent anti-inflammatory effects of glucocorticoids, representing a potential target for promoting resolution of inflammatory responses.
Current Topics in Microbiology and Immunology | 2006
Udo S. Gaipl; Ahmed Sheriff; Sandra Franz; Luis E. Munoz; Reinhard E. Voll; Joachim R. Kalden; Martin Herrmann
Dying cells were basically unnoticed by scientists for a long time and only came back into the spotlight roughly 10 years ago. The process of recognition and uptake of apoptotic and necrotic cells is complex and failures in this process can contribute to the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Here, we discuss the recognition and uptake molecules which are involved in an efficient clearance of dying cells in early and late phases of cell death. The exposure of phosphatidylserine (PS) is an early surface change of apoptosing cells recognized by several receptors and adaptor molecules. We demonstrated that dying cells have cell membranes with high lateral mobility of PS, which contribute to their efficient clearance. Changes of the glycoprotein composition of apoptotic cells occur later than the exposure of PS. We further observed that complement binding is an early event in necrosis and a rather late event in apoptosis. Complement, C-reactive protein (CRP), and serum DNase I act as back-up molecules in the clearance process. Finally, we discuss how the accumulation of secondary necrotic cells and cellular debris in the germinal centers of secondary lymph organs can lead to autoimmunity. It is reasonable to argue that clearance defects are major players in the development of autoimmune diseases such as SLE.
Cell Death & Differentiation | 2007
Sandra Franz; K Herrmann; Barbara G. Fürnrohr; Ahmed Sheriff; Benjamin Frey; Udo S. Gaipl; Reinhard E. Voll; J. R. Kalden; H-M Jäck; Martin J. Herrmann
Apoptosis and phagocytosis of apoptotic cells are crucial processes. At best the phagocytic machinery detects and swallows all apoptotic cells in a way that progression to secondary necrosis is avoided. Otherwise, inflammation and autoimmune diseases may occur. Most apoptotic cells are phagocytosed instantaneously in a silent fashion; however, some dying cells escape their clearance. If the cells are not cleared early, they lose membranes due to extensive shedding of membrane surrounded vesicles (blebbing) and shrink. It is unclear how apoptotic cells compensate their massive loss of plasma membrane. Here, we demonstrate that endoplasmic reticulum- (ER) resident proteins (calnexin, the KDEL receptor and a dysfunctional immunoglobulin heavy chain) were exposed at the surfaces of shrunken late apoptotic cells. Additionally, these cells showed an increased binding of lectins, which recognize sugar structures predominantly found as moieties of incompletely processed proteins in ER and Golgi. In addition the ER resident lipophilic ER-Tracker™ Blue-White DPX, and internal GM1 were observed to translocate to the cell surfaces during late apoptosis. We conclude that during blebbing of apoptotic cells the surface membrane loss is substituted by immature membranes from internal stores. This mechanism explains the simultaneous appearance of preformed recognition structures for several adaptor proteins known to be involved in clearance of dead cells.
Cytometry Part A | 2006
Sandra Franz; Benjamin Frey; Ahmed Sheriff; Udo S. Gaipl; Alexandra Beer; Reinhard E. Voll; Joachim R. Kalden; Martin Herrmann
Mechanisms governing the normal resolution processes of inflammation are poorly understood, yet their elucidation may lead to a greater understanding of the pathogenesis of chronic inflammation. The removal of apoptotic cell material and their potentially histotoxic contents is a prerequisite of resolution. Engulfment by macrophages is an important disposal route, and changes in the apoptotic cells that are associated with their recognition by macrophages are the subject of this report.
Journal of Biological Chemistry | 2012
Rostyslav Bilyy; Tanya Shkandina; Andriy Tomin; Luis E. Munoz; Sandra Franz; Volodymyr Antonyuk; Yuriy Kit; Matthias Zirngibl; Barbara G. Fürnrohr; Christina Janko; Kirsten Lauber; Martin Schiller; Georg Schett; Rostyslav Stoika; Martin J. Herrmann
Background: Apoptotic cells release vesicles, which expose “eat-me” signals. Results: Vesicles originated from endoplasmic reticulum expose immature glycoepitopes and are preferentially phagocytosed by macrophages. Conclusion: Immature surface glycoepitopes serve as “eat-me” signals for the clearance of apoptotic vesicles originated from endoplasmic reticulum. Significance: Understanding the distinction by macrophages of apoptotic blebs may provide new insights into clearance-related diseases. Inappropriate clearance of apoptotic remnants is considered to be the primary cause of systemic autoimmune diseases, like systemic lupus erythematosus. Here we demonstrate that apoptotic cells release distinct types of subcellular membranous particles (scMP) derived from the endoplasmic reticulum (ER) or the plasma membrane. Both types of scMP exhibit desialylated glycotopes resulting from surface exposure of immature ER-derived glycoproteins or from surface-borne sialidase activity, respectively. Sialidase activity is activated by caspase-dependent mechanisms during apoptosis. Cleavage of sialidase Neu1 by caspase 3 was shown to be directly involved in apoptosis-related increase of surface sialidase activity. ER-derived blebs possess immature mannosidic glycoepitopes and are prioritized by macrophages during clearance. Plasma membrane-derived blebs contain nuclear chromatin (DNA and histones) but not components of the nuclear envelope. Existence of two immunologically distinct types of apoptotic blebs may provide new insights into clearance-related diseases.
Biomatter | 2012
Jennifer Kajahn; Sandra Franz; Erik Rueckert; Inka Forstreuter; Vera Hintze; Stephanie Moeller; Jan C. Simon
Integration of biomaterials into tissues is often disturbed by unopposed activation of macrophages. Immediately after implantation, monocytes are attracted from peripheral blood to the implantation site where they differentiate into macrophages. Inflammatory signals from the sterile tissue injury around the implanted biomaterial mediate the differentiation of monocytes into inflammatory M1 macrophages (M1) via autocrine and paracrine mechanisms. Suppression of sustained M1 differentiation is thought to be crucial to improve implant healing. Here, we explore whether artificial extracellular matrix (aECM) composed of collagen I and hyaluronan (HA) or sulfated HA-derivatives modulate this monocyte differentiation. We mimicked conditions of sterile tissue injury in vitro using a specific cytokine cocktail containing MCP-1, IL-6 and IFNγ, which induced in monocytes a phenotype similar to M1 macrophages (high expression of CD71, HLA-DR but no CD163 and release of high amounts of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12 and TNFα). In the presence of aECMs containing high sulfated HA this monocyte to M1 differentiation was disturbed. Specifically, pro-inflammatory functions were impaired as shown by reduced secretion of IL-1β, IL-8, IL-12 and TNFα. Instead, release of the immunregulatory cytokine IL-10 and expression of CD163, both markers specific for anti-inflammatory M2 macrophages (M2), were induced. We conclude that aECMs composed of collagen I and high sulfated HA possess immunomodulating capacities and skew monocyte to macrophage differentiation induced by pro-inflammatory signals of sterile injury toward M2 polarization suggesting them as an effective coating for biomaterials to improve their integration.
Journal of Leukocyte Biology | 2007
Luis E. Munoz; Sandra Franz; Friederike Pausch; Barbara G. Fürnrohr; Ahmed Sheriff; Birgit Vogt; Peter Kern; Wolfgang Baum; Christian Stach; Dorothee von Laer; Bent Brachvogel; Ernst Pöschl; Martin Herrmann; Udo S. Gaipl
Apoptotic and necrotic cells expose phosphatidylserine (PS). This membrane modification ensures a swift recognition and uptake by phagocytes of the dying and dead cells. Annexin V (AxV) preferentially binds to anionic phospholipids and thereby, modulates the clearance process. First, we analyzed the influence of AxV on the immunogenicity of apoptotic cells. The addition to apoptotic cells of AxV prior to their injection into mice increased their immunogenicity significantly. Next, we studied the influence of endogenous AxV on the allogeneic reaction against apoptotic and necrotic cells. To preserve heat‐labile, short‐lived “danger signals,” we induced necrosis by mechanical stress. Wild‐type mice showed a strong, allogeneic delayed‐type hypersensitivity (DTH) reaction. In contrast, AxV‐deficient animals showed almost no allogeneic DTH reaction, indicating that endogenous AxV increases the immune response against dead cells. Furthermore, AxV‐deficient macrophages had a higher immunosuppressive potential in vitro. Next, we analyzed the influence of AxV on chronic macrophage infection with HIV‐1, known to expose PS on its surface. The infectivity in human macrophages of HIV‐1 was reduced significantly in the presence of AxV. Finally, we show that AxV also blocked the in vitro uptake by macrophages of primary necrotic cells. Similar to apoptotic cells, necrotic cells generated by heat treatment displayed an anti‐inflammatory activity. In contrast, mechanical stress‐induced necrotic cells led to a decreased secretion of IL‐10, indicating a more inflammatory potent‐ial. From the experiments presented above, we conclude that AxV influences the clearance of several PS‐exposing particles such as viruses, dying, and dead cells.