Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra G.J. Boccard is active.

Publication


Featured researches published by Sandra G.J. Boccard.


Neurosurgery | 2013

Long-term outcomes of deep brain stimulation for neuropathic pain.

Sandra G.J. Boccard; Erlick A. C. Pereira; L Moir; Tipu Z. Aziz; Alexander L. Green

BACKGROUND Deep brain stimulation (DBS) to treat neuropathic pain refractory to pharmacotherapy has reported variable outcomes and has gained United Kingdom but not USA regulatory approval. OBJECTIVE To prospectively assess long-term efficacy of DBS for chronic neuropathic pain in a single-center case series. METHODS Patient reported outcome measures were collated before and after surgery, using a visual analog score, short-form 36-question quality-of-life survey, McGill pain questionnaire, and EuroQol-5D questionnaires (EQ-5D and health state). RESULTS One hundred ninety-seven patients were referred over 12 years, of whom 85 received DBS for various etiologies: 9 amputees, 7 brachial plexus injuries, 31 after stroke, 13 with spinal pathology, 15 with head and face pain, and 10 miscellaneous. Mean age at surgery was 52 years, and mean follow-up was 19.6 months. Contralateral DBS targeted the periventricular gray area (n = 33), the ventral posterior nuclei of the thalamus (n = 15), or both targets (n = 37). Almost 70% (69.4%) of patients retained implants 6 months after surgery. Thirty-nine of 59 (66%) of those implanted gained benefit and efficacy varied by etiology, improving outcomes in 89% after amputation and 70% after stroke. In this cohort, >30% improvements sustained in visual analog score, McGill pain questionnaire, short-form 36-question quality-of-life survey, and EuroQol-5D questionnaire were observed in 15 patients with >42 months of follow-up, with several outcome measures improving from those assessed at 1 year. CONCLUSION DBS for pain has long-term efficacy for select etiologies. Clinical trials retaining patients in long-term follow-up are desirable to confirm findings from prospectively assessed case series.


Neuroreport | 2014

Deep brain stimulation of the anterior cingulate cortex: targeting the affective component of chronic pain.

Sandra G.J. Boccard; Erlick A.C. Pereira; L Moir; T J van Hartevelt; Morten L. Kringelbach; James J. FitzGerald; I W Baker; Alexander L. Green; Tipu Z. Aziz

Deep brain stimulation (DBS) has shown promise for relieving nociceptive and neuropathic symptoms of refractory chronic pain. We assessed the efficacy of a new target for the affective component of pain, the anterior cingulate cortex (ACC). A 49-year-old man with neuropathic pain underwent bilateral ACC DBS. Patient-reported outcome measures were collected before and 2 years after surgery using a Visual Analogue Scale, Short-Form 36 quality of life survey, McGill pain questionnaire, EuroQol-5D questionnaires (EQ-5D; Health State) and neuropsychological assessments. The patient improved with DBS. Two years after surgery, the Visual Analogue Scale decreased from 6.7 to 3.0, McGill pain questionnaire improved by 42% and EQ-5D Health State increased by 150%. Stimulating the ACC at 130 Hz, 330 µs and 3 V facilitated neuropathic pain relief. The DBS remained efficacious during the 2-year follow-up period. Affective ACC DBS can relieve chronic neuropathic pain refractory to pharmacotherapy and restore quality of life.


Neurosurgical Focus | 2013

Thalamic deep brain stimulation for neuropathic pain after amputation or brachial plexus avulsion.

Pereira Eac.; Sandra G.J. Boccard; P Linhares; C Chamadoira; M J Rosas; P Abreu; V Rebelo; R Vaz; Tipu Z. Aziz

OBJECT Fifteen hundred patients have received deep brain stimulation (DBS) to treat neuropathic pain refractory to pharmacotherapy over the last half-century, but few during the last decade. Deep brain stimulation for neuropathic pain has shown variable outcomes and gained consensus approval in Europe but not the US. This study prospectively evaluated the efficacy at 1 year of DBS for phantom limb pain after amputation, and deafferentation pain after brachial plexus avulsion (BPA), in a single-center case series. METHODS Patient-reported outcome measures were collated before and after surgery, using a visual analog scale (VAS) score, 36-Item Short-Form Health Survey (SF-36), Brief Pain Inventory (BPI), and University of Washington Neuropathic Pain Score (UWNPS). RESULTS Twelve patients were treated over 29 months, receiving contralateral, ventroposterolateral sensory thalamic DBS. Five patients were amputees and 7 had BPAs, all from traumas. A postoperative trial of externalized DBS failed in 1 patient with BPA. Eleven patients proceeded to implantation and gained improvement in pain scores at 12 months. No surgical complications or stimulation side effects were noted. In the amputation group, after 12 months the mean VAS score improved by 90.0% ± 10.0% (p = 0.001), SF-36 by 57.5% ± 97.9% (p = 0.127), UWNPS by 80.4% ± 12.7% (p < 0.001), and BPI by 79.9% ± 14.7% (p < 0.001). In the BPA group, after 12 months the mean VAS score improved by 52.7% ± 30.2% (p < 0.001), SF-36 by 15.6% ± 30.5% (p = 1.000), UWNPS by 26.2% ± 40.8% (p = 0.399), and BPI by 38.4% ± 41.7% (p = 0.018). Mean DBS parameters were 2.5 V, 213 microseconds, and 25 Hz. CONCLUSIONS Deep brain stimulation demonstrated efficacy at 1 year for chronic neuropathic pain after traumatic amputation and BPA. Clinical trials that retain patients in long-term follow-up are desirable to confirm findings from prospectively assessed case series.


New Journal of Physics | 2015

Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome

Henrique M. Fernandes; Tim J. van Hartevelt; Sandra G.J. Boccard; Sarah L.F. Owen; Joana Cabral; Gustavo Deco; Alexander L. Green; James J. FitzGerald; Tipu Z. Aziz; Morten L. Kringelbach

Deep brain stimulation (DBS) is a remarkably effective clinical tool, used primarily for movement disorders. DBS relies on precise targeting of specific brain regions to rebalance the oscillatory behaviour of whole-brain neural networks. Traditionally, DBS targeting has been based upon animal models (such as MPTP for Parkinson’s disease) but has also been the result of serendipity during human lesional neurosurgery. There are, however, no good animal models of psychiatric disorders such as depression and schizophrenia, and progress in this area has been slow. In this paper, we use advanced tractography combined with whole-brain anatomical parcellation to provide a rational foundation for identifying the connectivity ‘fingerprint’ of existing, successful DBS targets. This knowledge can then be used pre-surgically and even potentially for the discovery of novel targets. First, using data from our recent case series of cingulate DBS for patients with treatment-resistant chronic pain, we demonstrate how to identify the structural ‘fingerprints’ of existing successful and unsuccessful DBS targets in terms of their connectivity to other brain regions, as defined by the whole-brain anatomical parcellation. Second, we use a number of different strategies to identify the successful fingerprints of structural connectivity across four patients with successful outcomes compared with two patients with unsuccessful outcomes. This fingerprinting method can potentially be used pre-surgically to account for a patient’s individual connectivity and identify the best DBS target. Ultimately, our novel fingerprinting method could be combined with advanced whole-brain computational modelling of the spontaneous dynamics arising from the structural changes in disease, to provide new insights and potentially new targets for hitherto impenetrable neuropsychiatric disorders.


Neuromodulation | 2018

Unexpected Complications of Novel Deep Brain Stimulation Treatments: Ethical Issues and Clinical Recommendations.

Hannah Maslen; Binith Cheeran; Jonathan Pugh; Laurie Pycroft; Sandra G.J. Boccard; Simon J. Prangnell; Alexander L. Green; James J. FitzGerald; Julian Savulescu; Tipu Z. Aziz

Innovative neurosurgical treatments present a number of known risks, the natures and probabilities of which can be adequately communicated to patients via the standard procedures governing obtaining informed consent. However, due to their novelty, these treatments also come with unknown risks, which require an augmented approach to obtaining informed consent.


World Neurosurgery | 2016

Post-Traumatic Tremor and Thalamic Deep Brain Stimulation: Evidence for Use of Diffusion Tensor Imaging.

Sandra G.J. Boccard; Pedro Rebelo; Binith Cheeran; Alexander L. Green; James J. FitzGerald; Tipu Z. Aziz

BACKGROUND Deep brain stimulation (DBS) is a well-established treatment to reduce tremor, notably in Parkinson disease. DBS may also be effective in post-traumatic tremor, one of the most common movement disorders caused by head injury. However, the cohorts of patients often have multiple lesions that may impact the outcome depending on which fiber tracts are affected. CASE DESCRIPTION A 20-year-old man presented after road traffic accident with severe closed head injury and polytrauma. Computed tomography scan showed left frontal and basal ganglia hemorrhagic contusions and intraventricular hemorrhage. A disabling tremor evolved in step with motor recovery. Despite high-intensity signals in the intended thalamic target, a visual analysis of the preoperative diffusion tensor imaging revealed preservation of connectivity of the intended target, ventralis oralis posterior thalamic nucleus (VOP). This was confirmed by the postoperative tractography study presented here. DBS of the VOP/zona incerta was performed. Six months postimplant, marked improvement of action (postural, kinetic, and intention) tremor was achieved. CONCLUSIONS We demonstrated a strong connectivity between the VOP and the superior frontal gyrus containing the premotor cortex and other central brain areas responsible for movement control. In spite of an existing lesion in the target, the preservation of these tracts may be relevant to the improvement of the patients symptoms by DBS.


Frontiers in Human Neuroscience | 2018

Dorsal Anterior Cingulate Cortices Differentially Lateralize Prediction Errors and Outcome Valence in a Decision-Making Task.

Alexander R. Weiss; Martin J. Gillies; Marios G. Philiastides; Matthew A. J. Apps; Miles A. Whittington; James J. FitzGerald; Sandra G.J. Boccard; Tipu Z. Aziz; Alexander L. Green

The dorsal anterior cingulate cortex (dACC) is proposed to facilitate learning by signaling mismatches between the expected outcome of decisions and the actual outcomes in the form of prediction errors. The dACC is also proposed to discriminate outcome valence—whether a result has positive (either expected or desirable) or negative (either unexpected or undesirable) value. However, direct electrophysiological recordings from human dACC to validate these separate, but integrated, dimensions have not been previously performed. We hypothesized that local field potentials (LFPs) would reveal changes in the dACC related to prediction error and valence and used the unique opportunity offered by deep brain stimulation (DBS) surgery in the dACC of three human subjects to test this hypothesis. We used a cognitive task that involved the presentation of object pairs, a motor response, and audiovisual feedback to guide future object selection choices. The dACC displayed distinctly lateralized theta frequency (3–8 Hz) event-related potential responses—the left hemisphere dACC signaled outcome valence and prediction errors while the right hemisphere dACC was involved in prediction formation. Multivariate analyses provided evidence that the human dACC response to decision outcomes reflects two spatiotemporally distinct early and late systems that are consistent with both our lateralized electrophysiological results and the involvement of the theta frequency oscillatory activity in dACC cognitive processing. Further findings suggested that dACC does not respond to other phases of action-outcome-feedback tasks such as the motor response which supports the notion that dACC primarily signals information that is crucial for behavioral monitoring and not for motor control.


Journal of Clinical Neuroscience | 2015

Deep brain stimulation for chronic pain

Sandra G.J. Boccard; Erlick A.C. Pereira; Tipu Z. Aziz


World Neurosurgery | 2016

Brainjacking: Implant Security Issues in Invasive Neuromodulation.

Laurie Pycroft; Sandra G.J. Boccard; Sarah L.F. Owen; John Stein; James J. FitzGerald; Alexander L. Green; Tipu Z. Aziz


Neurosurgery | 2014

Deep Brain Stimulation for Pain: Distinguishing Dorsolateral Somesthetic and Ventromedial Affective Targets

Erlick A.C. Pereira; Sandra G.J. Boccard; Tipu Z. Aziz

Collaboration


Dive into the Sandra G.J. Boccard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L Moir

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge