Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Galic is active.

Publication


Featured researches published by Sandra Galic.


Molecular and Cellular Endocrinology | 2010

Adipose tissue as an endocrine organ.

Sandra Galic; Jon S. Oakhill; Gregory R. Steinberg

Obesity is characterized by increased storage of fatty acids in an expanded adipose tissue mass and is closely associated with the development of insulin resistance in peripheral tissues such as skeletal muscle and the liver. In addition to being the largest source of fuel in the body, adipose tissue and resident macrophages are also the source of a number of secreted proteins. Cloning of the obese gene and the identification of its product, leptin, was one of the first discoveries of an adipocyte-derived signaling molecule and established an important role for adipose tissue as an endocrine organ. Since then, leptin has been found to have a profound role in the regulation of whole-body metabolism by stimulating energy expenditure, inhibiting food intake and restoring euglycemia, however, in most cases of obesity leptin resistance limits its biological efficacy. In contrast to leptin, adiponectin secretion is often diminished in obesity. Adiponectin acts to increase insulin sensitivity, fatty acid oxidation, as well as energy expenditure and reduces the production of glucose by the liver. Resistin and retinol binding protein-4 are less well described. Their expression levels are positively correlated with adiposity and they are both implicated in the development of insulin resistance. More recently it has been acknowledged that macrophages are an important part of the secretory function of adipose tissue and the main source of inflammatory cyokines, such as TNFalpha and IL-6. An increase in circulating levels of these macrophage-derived factors in obesity leads to a chronic low-grade inflammatory state that has been linked to the development of insulin resistance and diabetes. These proteins commonly known as adipokines are central to the dynamic control of energy metabolism, communicating the nutrient status of the organism with the tissues responsible for controlling both energy intake and expenditure as well as insulin sensitivity.


Cell Metabolism | 2009

Reactive oxygen species enhance insulin sensitivity

Kim Loh; Haiyang Deng; Atsushi Fukushima; Xiaochu Cai; Benoit Boivin; Sandra Galic; Clinton R. Bruce; Benjamin James Shields; Beata Skiba; Lisa M Ooms; Nigel K. Stepto; Ben Jing Wu; Christina A. Mitchell; Nicholas K. Tonks; Matthew J. Watt; Mark A. Febbraio; Peter J. Crack; Sofianos Andrikopoulos; Tony Tiganis

Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione peroxidase 1 (Gpx1), were protected from high-fat-diet-induced insulin resistance. The increased insulin sensitivity in Gpx1(-/-) mice was attributed to insulin-induced phosphatidylinositol-3-kinase/Akt signaling and glucose uptake in muscle and could be reversed by the antioxidant N-acetylcysteine. Increased insulin signaling correlated with enhanced oxidation of the PTP family member PTEN, which terminates signals generated by phosphatidylinositol-3-kinase. These studies provide causal evidence for the enhancement of insulin signaling by ROS in vivo.


Nature Medicine | 2013

Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin

Morgan D. Fullerton; Sandra Galic; Katarina Marcinko; Sarah Sikkema; Thomas Pulinilkunnil; Zhi-Ping Chen; Hayley M. O'Neill; Rebecca J. Ford; Rengasamy Palanivel; Matthew O'Brien; D. Grahame Hardie; S. Lance Macaulay; Jonathan D. Schertzer; Jason R. B. Dyck; Bryce J. W. van Denderen; Bruce E. Kemp; Gregory R. Steinberg

The obesity epidemic has led to an increased incidence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. AMP-activated protein kinase (Ampk) regulates energy homeostasis and is activated by cellular stress, hormones and the widely prescribed type 2 diabetes drug metformin. Ampk phosphorylates mouse acetyl-CoA carboxylase 1 (Acc1; refs. 3,4) at Ser79 and Acc2 at Ser212, inhibiting the conversion of acetyl-CoA to malonyl-CoA. The latter metabolite is a precursor in fatty acid synthesis and an allosteric inhibitor of fatty acid transport into mitochondria for oxidation. To test the physiological impact of these phosphorylation events, we generated mice with alanine knock-in mutations in both Acc1 (at Ser79) and Acc2 (at Ser212) (Acc double knock-in, AccDKI). Compared to wild-type mice, these mice have elevated lipogenesis and lower fatty acid oxidation, which contribute to the progression of insulin resistance, glucose intolerance and NAFLD, but not obesity. Notably, AccDKI mice made obese by high-fat feeding are refractory to the lipid-lowering and insulin-sensitizing effects of metformin. These findings establish that inhibitory phosphorylation of Acc by Ampk is essential for the control of lipid metabolism and, in the setting of obesity, for metformin-induced improvements in insulin action.


Journal of Biological Chemistry | 2004

Regulation of insulin signaling through reversible oxidation of the protein tyrosine phosphatases TC45 and PTP1B

Tzu-Ching Meng; Deirdre A. Buckley; Sandra Galic; Tony Tiganis; Nicholas K. Tonks

Many studies have illustrated that the production of reactive oxygen species (ROS) is important for optimal tyrosine phosphorylation and signaling in response to diverse stimuli. Protein-tyrosine phosphatases (PTPs), which are important regulators of signal transduction, are exquisitely sensitive to inhibition after generation of ROS, and reversible oxidation is becoming recognized as a general physiological mechanism for regulation of PTP function. Thus, production of ROS facilitates a tyrosine phosphorylation-dependent cellular signaling response by transiently inactivating those PTPs that normally suppress the signal. In this study, we have explored the importance of reversible PTP oxidation in the signaling response to insulin. Using a modified ingel PTP assay, we show that stimulation of cells with insulin resulted in the rapid and transient oxidation and inhibition of two distinct PTPs, which we have identified as PTP1B and TC45, the 45-kDa spliced variant of the T cell protein-tyrosine phosphatase. We investigated further the role of TC45 as a regulator of insulin signaling by combining RNA interference and the use of substrate-trapping mutants. We have shown that TC45 is an inhibitor of insulin signaling, recognizing the β-subunit of the insulin receptor as a substrate. The data also suggest that this strategy, using ligand-induced oxidation to tag specific PTPs and using interference RNA and substrate-trapping mutants to illustrate their role as regulators of particular signal transduction pathways, may be applied broadly across the PTP family to explore function.


Journal of Clinical Investigation | 2011

Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity

Sandra Galic; Morgan D. Fullerton; Jonathan D. Schertzer; Sarah Sikkema; Katarina Marcinko; Carl R. Walkley; David J. Izon; Jane Honeyman; Zhi-Ping Chen; Bryce J. W. van Denderen; Bruce E. Kemp; Gregory R. Steinberg

Individuals who are obese are frequently insulin resistant, putting them at increased risk of developing type 2 diabetes and its associated adverse health conditions. The accumulation in adipose tissue of macrophages in an inflammatory state is a hallmark of obesity-induced insulin resistance. Here, we reveal a role for AMPK β1 in protecting macrophages from inflammation under high lipid exposure. Genetic deletion of the AMPK β1 subunit in mice (referred to herein as β1(-/-) mice) reduced macrophage AMPK activity, acetyl-CoA carboxylase phosphorylation, and mitochondrial content, resulting in reduced rates of fatty acid oxidation. β1(-/-) macrophages displayed increased levels of diacylglycerol and markers of inflammation, effects that were reproduced in WT macrophages by inhibiting fatty acid oxidation and, conversely, prevented by pharmacological activation of AMPK β1-containing complexes. The effect of AMPK β1 loss in macrophages was tested in vivo by transplantation of bone marrow from WT or β1(-/-) mice into WT recipients. When challenged with a high-fat diet, mice that received β1(-/-) bone marrow displayed enhanced adipose tissue macrophage inflammation and liver insulin resistance compared with animals that received WT bone marrow. Thus, activation of AMPK β1 and increasing fatty acid oxidation in macrophages may represent a new therapeutic approach for the treatment of insulin resistance.


Molecular and Cellular Biology | 2003

Regulation of Insulin Receptor Signaling by the Protein Tyrosine Phosphatase TCPTP

Sandra Galic; Manuela Klingler-Hoffmann; Michelle T. Fodero-Tavoletti; Michelle A. Puryer; Tzu-Ching Meng; Nicholas K. Tonks; Tony Tiganis

ABSTRACT The human protein tyrosine phosphatase TCPTP exists as two forms: an endoplasmic reticulum-targeted 48-kDa form (TC48) and a nuclear 45-kDa form (TC45). Although targeted to the nucleus, TC45 can exit in response to specific stimuli to dephosphorylate cytoplasmic substrates. In this study, we investigated the downregulation of insulin receptor (IR) signaling by TCPTP. In response to insulin stimulation, the TC48-D182A and TC45-D182A “substrate-trapping” mutants formed stable complexes with the endogenous tyrosine-phosphorylated IR β-subunit in 293 cells. Moreover, in response to insulin stimulation, the TC45-D182A mutant accumulated in the cytoplasm of cells overexpressing the IR and in part colocalized with the IR β-subunit at the cell periphery. These results indicate that the IR may serve as a cellular substrate for both TC48 and TC45. In immortalized TCPTP−/− murine embryo fibroblasts, insulin-induced IR β-subunit tyrosine phosphorylation and protein kinase PKB/Akt activation were enhanced relative to the values in TCPTP+/+ cells. Importantly, the expression of TC45 or TC48 to physiological levels suppressed the enhanced insulin-induced signaling in TCPTP−/− cells. These results indicate that the differentially localized variants of TCPTP may dephosphorylate the IR and downregulate insulin-induced signaling in vivo.


Molecular and Cellular Biology | 2005

Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP

Sandra Galic; Christine Hauser; Barbara B. Kahn; Fawaz G. Haj; Benjamin G. Neel; Nicholas K. Tonks; Tony Tiganis

ABSTRACT The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.


Journal of Biological Chemistry | 2010

Whole Body Deletion of AMP-activated Protein Kinase β2 Reduces Muscle AMPK Activity and Exercise Capacity

Gregory R. Steinberg; Hayley M. O'Neill; Nicolas Dzamko; Sandra Galic; Tim Naim; René Koopman; Sebastian B. Jørgensen; Jane Honeyman; Kimberly A. Hewitt; Zhi-Ping Chen; Jonathan D. Schertzer; John W. Scott; Frank Koentgen; Gordon S. Lynch; Matthew J. Watt; Bryce J. W. van Denderen; Duncan J. Campbell; Bruce E. Kemp

AMP-activated protein kinase (AMPK) β subunits (β1 and β2) provide scaffolds for binding α and γ subunits and contain a carbohydrate-binding module important for regulating enzyme activity. We generated C57Bl/6 mice with germline deletion of AMPK β2 (β2 KO) and examined AMPK expression and activity, exercise capacity, metabolic control during muscle contractions, aminoimidazole carboxamide ribonucleotide (AICAR) sensitivity, and susceptibility to obesity-induced insulin resistance. We find that β2 KO mice are viable and breed normally. β2 KO mice had a reduction in skeletal muscle AMPK α1 and α2 expression despite up-regulation of the β1 isoform. Heart AMPK α2 expression was also reduced but this did not affect resting AMPK α1 or α2 activities. AMPK α1 and α2 activities were not changed in liver, fat, or hypothalamus. AICAR-stimulated glucose uptake but not fatty acid oxidation was impaired in β2 KO mice. During treadmill running β2 KO mice had reduced maximal and endurance exercise capacity, which was associated with lower muscle and heart AMPK activity and reduced levels of muscle and liver glycogen. Reductions in exercise capacity of β2 KO mice were not due to lower muscle mitochondrial content or defects in contraction-stimulated glucose uptake or fatty acid oxidation. When challenged with a high-fat diet β2 KO mice gained more weight and were more susceptible to the development of hyperinsulinemia and glucose intolerance. In summary these data show that deletion of AMPK β2 reduces AMPK activity in skeletal muscle resulting in impaired exercise capacity and the worsening of diet-induced obesity and glucose intolerance.


Journal of Biological Chemistry | 2010

AMPK β1 Deletion Reduces Appetite, Preventing Obesity and Hepatic Insulin Resistance

Nicolas Dzamko; Bryce J. W. van Denderen; Andrea L. Hevener; Sebastian B. Jørgensen; Jane Honeyman; Sandra Galic; Zhi-Ping Chen; Matthew J. Watt; Duncan J. Campbell; Gregory R. Steinberg; Bruce E. Kemp

The AMP-activated protein kinase (AMPK) is an αβγ heterotrimer that regulates appetite and fuel metabolism. We have generated AMPK β1−/− mice on a C57Bl/6 background that are viable, fertile, survived greater than 2 years, and display no visible brain developmental defects. These mice have a 90% reduction in hepatic AMPK activity due to loss of the catalytic α subunits, with modest reductions of activity detected in the hypothalamus and white adipose tissue and no change in skeletal muscle or heart. On a low fat or an obesity-inducing high fat diet, β1−/− mice had reduced food intake, reduced adiposity, and reduced total body mass. Metabolic rate, physical activity, adipose tissue lipolysis, and lipogenesis were similar to wild type littermates. The reduced appetite and body mass of β1−/− mice were associated with protection from high fat diet-induced hyperinsulinemia, hepatic steatosis, and insulin resistance. We demonstrate that the loss of β1 reduces food intake and protects against the deleterious effects of an obesity-inducing diet.


Journal of Clinical Investigation | 2011

T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice

Benjamin James Shields; Sock Hui Chew; Konstantinos Kyparissoudis; Catherine van Vliet; Sandra Galic; Michel L. Tremblay; Sarah M. Russell; Dale I. Godfrey; Tony Tiganis

Many autoimmune diseases exhibit familial aggregation, indicating that they have genetic determinants. Single nucleotide polymorphisms in PTPN2, which encodes T cell protein tyrosine phosphatase (TCPTP), have been linked with the development of several autoimmune diseases, including type 1 diabetes and Crohns disease. In this study, we have identified TCPTP as a key negative regulator of TCR signaling, which might explain the association of PTPN2 SNPs with autoimmune disease. We found that TCPTP dephosphorylates and inactivates Src family kinases to regulate T cell responses. Using T cell-specific TCPTP-deficient mice, we established that TCPTP attenuates T cell activation and proliferation in vitro and blunts antigen-induced responses in vivo. TCPTP deficiency lowered the in vivo threshold for TCR-dependent CD8(+) T cell proliferation. Consistent with this, T cell-specific TCPTP-deficient mice developed widespread inflammation and autoimmunity that was transferable to wild-type recipient mice by CD8(+) T cells alone. This autoimmunity was associated with increased serum levels of proinflammatory cytokines and anti-nuclear antibodies, T cell infiltrates in non-lymphoid tissues, and liver disease. These data indicate that TCPTP is a critical negative regulator of TCR signaling that sets the threshold for TCR-induced naive T cell responses to prevent autoimmune and inflammatory disorders arising.

Collaboration


Dive into the Sandra Galic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce E. Kemp

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Loh

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Bryce J. W. van Denderen

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jane Honeyman

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Zhi-Ping Chen

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

John W. Scott

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jonathan S. Oakhill

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge