Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Grès is active.

Publication


Featured researches published by Sandra Grès.


Journal of Clinical Investigation | 2004

Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer

Ahmed Boucharaba; Claire-Marie Serre; Sandra Grès; Jean Sébastien Saulnier-Blache; Jean-Claude Bordet; Julien Guglielmi; Philippe Clézardin; Olivier Peyruchaud

The role of lysophosphatidic acid (LPA) in cancer is poorly understood. Here we provide evidence for a role of LPA in the progression of breast cancer bone metastases. LPA receptors LPA(1), LPA(2), and LPA(3) were expressed in human primary breast tumors and a series of human breast cancer cell lines. The inducible overexpression of LPA(1) in MDA-BO2 breast cancer cells specifically sensitized these cells to the mitogenic action of LPA in vitro. In vivo, LPA(1) overexpression in MDA-BO2 cells enhanced the growth of subcutaneous tumor xenografts and promoted bone metastasis formation in mice by increasing both skeletal tumor growth and bone destruction. This suggested that endogenous LPA was produced in the tumor microenvironment. However, MDA-BO2 cells or transfectants did not produce LPA. Instead, they induced the release of LPA from activated platelets which, in turn, promoted tumor cell proliferation and the LPA(1)-dependent secretion of IL-6 and IL-8, 2 potent bone resorption stimulators. Moreover, platelet-derived LPA deprivation in mice, achieved by treatment with the platelet antagonist Integrilin, inhibited the progression of bone metastases caused by parental and LPA(1)-overexpressing MDA-BO2 cells and reduced the progression of osteolytic lesions in mice bearing CHO-beta3wt ovarian cancer cells. Overall, our data suggest that, at the bone metastatic site, tumor cells stimulate the production of LPA from activated platelets, which enhances both tumor growth and cytokine-mediated bone destruction.


Gut | 2012

Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota

Matteo Serino; Elodie Luche; Sandra Grès; Audrey Baylac; Mathieu Bergé; Claire Cenac; Aurélie Waget; Pascale Klopp; Jason Iacovoni; Christophe Klopp; Jérôme Mariette; Olivier Bouchez; Jérôme Lluch; Françoise Ouarné; Pierre Monsan; Philippe Valet; Christine Roques; Jacques Amar; Anne Bouloumié; Vassilia Theodorou; Rémy Burcelin

Objective The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. Methods The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a gluco-oligosaccharide (GOS)-supplemented HFD (HFD+GOS). Results Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. Conclusions The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet.


Journal of Biological Chemistry | 2003

Autotaxin Is Released from Adipocytes, Catalyzes Lysophosphatidic Acid Synthesis, and Activates Preadipocyte Proliferation UP-REGULATED EXPRESSION WITH ADIPOCYTE DIFFERENTIATION AND OBESITY

Gilles Ferry; Edwige Tellier; Anne Try; Sandra Grès; Isabelle Naime; Marie Françoise Simon; Marianne Rodriguez; Jérémie Boucher; Ivan Tack; Stephane Gesta; Pascale Chomarat; Marc Dieu; Martine Raes; Jean Pierre Galizzi; Philippe Valet; Jean A. Boutin; Jean Sébastien Saulnier-Blache

Our group has recently demonstrated (Gesta, S., Simon, M., Rey, A., Sibrac, D., Girard, A., Lafontan, M., Valet, P., and Saulnier-Blache, J. S. (2002) J. Lipid Res. 43, 904–910) the presence, in adipocyte conditioned-medium, of a soluble lysophospholipased-activity (LPLDact) involved in synthesis of the bioactive phospholipid lysophosphatidic acid (LPA). In the present report, LPLDact was purified from 3T3F442A adipocyte-conditioned medium and identified as the type II ecto-nucleotide pyrophosphatase phosphodiesterase, autotaxin (ATX). A unique ATX cDNA was cloned from 3T3F442A adipocytes, and its recombinant expression in COS-7 cells led to extracellular release of LPLDact. ATX mRNA expression was highly up-regulated during adipocyte differentiation of 3T3F442A-preadipocytes. This up-regulation was paralleled by the ability of newly differentiated adipocytes to release LPLDact and LPA. Differentiation-dependent up-regulation of ATX expression was also observed in a primary culture of mouse preadipocytes. Treatment of 3T3F442A-preadipocytes with concentrated conditioned medium from ATX-expressing COS-7 cells led to an increase in cell number as compared with concentrated conditioned medium from ATX non-expressing COS-7 cells. The specific effect of ATX on preadipocyte proliferation was completely suppressed by co-treatment with a LPA-hydrolyzing phospholipase, phospholipase B. Finally, ATX expression was found in mature adipocytes isolated from mouse adipose tissue and was substantially increased in genetically obese-diabeticdb/db mice when compared with their lean siblings. In conclusion, the present work shows that ATX is responsible for the LPLDact released by adipocytes and exerts a paracrine control on preadipocyte growth via an LPA-dependent mechanism. Up-regulations of ATX expression with adipocyte differentiation and genetic obesity suggest a possible involvement of this released protein in the development of adipose tissue and obesity-associated pathologies.


Journal of The American Society of Nephrology | 2007

LPA1 Receptor Activation Promotes Renal Interstitial Fibrosis

Jean-Philippe Pradère; Julie Klein; Sandra Grès; Charlotte Guigné; Eric Neau; Philippe Valet; Denis Calise; Jerold Chun; Jean-Loup Bascands; Jean-Sébastien Saulnier-Blache; Joost P. Schanstra

Tubulointerstitial fibrosis in chronic renal disease is strongly associated with progressive loss of renal function. We studied the potential involvement of lysophosphatidic acid (LPA), a growth factor-like phospholipid, and its receptors LPA(1-4) in the development of tubulointerstitial fibrosis (TIF). Renal fibrosis was induced in mice by unilateral ureteral obstruction (UUO) for up to 8 d, and kidney explants were prepared from the distal poles to measure LPA release into conditioned media. After obstruction, the extracellular release of LPA increased approximately 3-fold. Real-time reverse transcription PCR (RT-PCR) analysis demonstrated significant upregulation in the expression of the LPA(1) receptor subtype, downregulation of LPA3, and no change of LPA2 or LPA4. TIF was significantly attenuated in LPA1 (-/-) mice compared to wild-type littermates, as measured by expression of collagen III, alpha-smooth muscle actin (alpha-SMA), and F4/80. Furthermore, treatment of wild-type mice with the LPA1 antagonist Ki16425 similarly reduced fibrosis and significantly attenuated renal expression of the profibrotic cytokines connective tissue growth factor (CTGF) and transforming growth factor beta (TGFbeta). In vitro, LPA induced a rapid, dose-dependent increase in CTGF expression that was inhibited by Ki16425. In conclusion, LPA, likely acting through LPA1, is involved in obstruction-induced TIF. Therefore, the LPA1 receptor might be a pharmaceutical target to treat renal fibrosis.


Journal of Lipid Research | 2011

Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid.

Rodolphe Dusaulcy; Chloé Rancoule; Sandra Grès; Estelle Wanecq; André Colom; Charlotte Guigné; Laurens A. van Meeteren; Wouter H. Moolenaar; Philippe Valet; Jean Sébastien Saulnier-Blache

Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA). ATX is secreted by adipose tissue and its expression is enhanced in obese/insulin-resistant individuals. Here, we analyzed the specific contribution of adipose-ATX to fat expansion associated with nutritional obesity and its consequences on plasma LPA levels. We established ATXF/F/aP2-Cre (FATX-KO) transgenic mice carrying a null ATX allele specifically in adipose tissue. FATX-KO mice and their control littermates were fed either a normal or a high-fat diet (HFD) (45% fat) for 13 weeks. FATX-KO mice showed a strong decrease (up to 90%) in ATX expression in white and brown adipose tissue, but not in other ATX-expressing organs. This was associated with a 38% reduction in plasma LPA levels. When fed an HFD, FATX-KO mice showed a higher fat mass and a higher adipocyte size than control mice although food intake was unchanged. This was associated with increased expression of peroxisome proliferator-activated receptor (PPAR)γ2 and of PPAR-sensitive genes (aP2, adiponectin, leptin, glut-1) in subcutaneous white adipose tissue, as well as in an increased tolerance to glucose. These results show that adipose-ATX is a negative regulator of fat mass expansion in response to an HFD and contributes to plasma LPA levels.


Genes & Development | 2008

Phosphatidic acid mediates demyelination in Lpin1 mutant mice

Karim Nadra; Anne-Sophie de Preux Charles; Jean-Jacques Médard; William T. Hendriks; Gil-Soo Han; Sandra Grès; George M. Carman; Jean-Sébastien Saulnier-Blache; Mark H. G. Verheijen; Roman Chrast

Lipids play crucial roles in many aspects of glial cell biology, affecting processes ranging from myelin membrane biosynthesis to axo-glial interactions. In order to study the role of lipid metabolism in myelinating glial cells, we specifically deleted in Schwann cells the Lpin1 gene, which encodes the Mg2+-dependent phosphatidate phosphatase (PAP1) enzyme necessary for normal triacylglycerol biosynthesis. The affected animals developed pronounced peripheral neuropathy characterized by myelin degradation, Schwann cell dedifferentiation and proliferation, and a reduction in nerve conduction velocity. The observed demyelination is mediated by endoneurial accumulation of the substrate of the PAP1 enzyme, phosphatidic acid (PA). In addition, we show that PA is a potent activator of the MEK-Erk pathway in Schwann cells, and that this activation is required for PA-induced demyelination. Our results therefore reveal a surprising role for PA in Schwann cell fate determination and provide evidence of a direct link between diseases affecting lipid metabolism and abnormal Schwann cell function.


Diabetologia | 2005

Potential involvement of adipocyte insulin resistance in obesity-associated up-regulation of adipocyte lysophospholipase D/autotaxin expression

Jeremie Boucher; Didier Quilliot; J. P. Pradères; Marie-Françoise Simon; Sandra Grès; Charlotte Guigné; D. Prévot; Gilles Ferry; Jean A. Boutin; Christian Carpéné; Philippe Valet; Jean Sébastien Saulnier-Blache

Aims/hypothesisAutotaxin is a lysophospholipase D that is secreted by adipocytes and whose expression is substantially up-regulated in obese, diabetic db/db mice. The aim of the present study was to depict the physiopathological and cellular mechanisms involved in regulation of adipocyte autotaxin expression.MethodsAutotaxin mRNAs were quantified in adipose tissue from db/db mice (obese and highly diabetic type 2), gold-thioglucose-treated (GTG) mice (highly obese and moderately diabetic type 2), high-fat diet-fed (HFD) mice (obese and moderately diabetic type 2), streptozotocin-treated mice (thin and diabetic type 1), and massively obese humans with glucose intolerance.ResultsWhen compared to non-obese controls, autotaxin expression in db/db mice was significantly increased, but not in GTG, HFD, or streptozotocin-treated mice. During db/db mice development, up-regulation of autotaxin occurred only 3 weeks after the emergence of hyperinsulinaemia, and simultaneously with the emergence of hyperglycaaemia. Adipocytes from db/db mice exhibited a stronger impairment of insulin-stimulated glucose uptake than non-obese and HFD-induced obese mice. Autotaxin expression was up-regulated by treatment with TNFα (insulin resistance-promoting cytokine), and down-regulated by rosiglitazone treatment (insulin-sensitising compound) in 3T3F442A adipocytes. Finally, adipose tissue autotaxin expression was significantly up-regulated in patients exhibiting both insulin resistance and impaired glucose tolerance.Conclusions/interpretationThe present work demonstrates the existence of a db/db-specific up-regulation of adipocyte autotaxin expression, which could be related to the severe type 2 diabetes phenotype and adipocyte insulin resistance, rather than excess adiposity in itself. It also showed that type 2 diabetes in humans is also associated with up-regulation of adipocyte autotaxin expression.


Molecular and Cellular Biology | 2012

Cell Autonomous Lipin 1 Function Is Essential for Development and Maintenance of White and Brown Adipose Tissue

Karim Nadra; Jean-Jacques Médard; Joram D. Mul; Gil-Soo Han; Sandra Grès; Mario Pende; Daniel Metzger; Pierre Chambon; Edwin Cuppen; Jean-Sébastien Saulnier-Blache; George M. Carman; Béatrice Desvergne; Roman Chrast

ABSTRACT Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2Cre/+/LpfEx2-3/fEx2-3 mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2Cre-ERT2/+/LpfEx2-3/fEx2-3 mice led to their replacement by newly formed Lpin1-positive adipocytes, thus establishing a role for lipin 1 in mature adipocyte maintenance. Importantly, we observed that the presence of newly formed Lpin1-positive adipocytes in aP2Cre-ERT2/+/LpfEx2-3/fEx2-3 mice protected these animals against WAT inflammation and hepatic steatosis induced by a high-fat diet. Loss of lipin 1 also affected BAT development and function, as revealed by histological changes, defects in the expression of peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, and UCP1, and functionally by altered cold sensitivity. Finally, our data indicate that phosphatidic acid, which accumulates in WAT of animals lacking lipin 1 function, specifically inhibits differentiation of preadipocytes. Together, these observations firmly demonstrate a cell autonomous role of lipin 1 in WAT and BAT biology and indicate its potential as a therapeutical target for the treatment of obesity.


Journal of Biological Chemistry | 2011

A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat

Joram D. Mul; Karim Nadra; Noorjahan B. Jagalur; Isaac J. Nijman; Pim W. Toonen; Jean Jacques Medard; Sandra Grès; Alain de Bruin; Gil-Soo Han; Jos F. Brouwers; George M. Carman; Jean Sébastien Saulnier-Blache; Dies Meijer; Roman Chrast; Edwin Cuppen

The Lpin1 gene encodes the phosphatidate phosphatase (PAP1) enzyme Lipin 1, which plays a critical role in lipid metabolism. In this study we describe the identification and characterization of a rat model with a mutated Lpin1 gene (Lpin11Hubr), generated by N-ethyl-N-nitrosourea mutagenesis. Lpin11Hubr rats are characterized by hindlimb paralysis and mild lipodystrophy that are detectable from the second postnatal week. Sequencing of Lpin1 identified a point mutation in the 5′-end splice site of intron 18 resulting in mis-splicing, a reading frameshift, and a premature stop codon. As this mutation does not induce nonsense-mediated decay, it allows the production of a truncated Lipin 1 protein lacking PAP1 activity. Lpin11Hubr rats developed hypomyelination and mild lipodystrophy rather than the pronounced demyelination and adipocyte defects characteristic of Lpin1fld/fld mice, which carry a null allele for Lpin1. Furthermore, biochemical, histological, and molecular analyses revealed that these lesions improve in older Lpin11Hubr rats as compared with young Lpin11Hubr rats and Lpin1fld/fld mice. We observed activation of compensatory biochemical pathways substituting for missing PAP1 activity that, in combination with a possible non-enzymatic Lipin 1 function residing outside of its PAP1 domain, may contribute to the less severe phenotypes observed in Lpin11Hubr rats as compared with Lpin1fld/fld mice. Although we are cautious in making a direct parallel between the presented rodent model and human disease, our data may provide new insight into the pathogenicity of recently identified human LPIN1 mutations.


/data/revues/12623636/v37i1sS1/S1262363611706140/ | 2011

PO36 - L’invalidation de l’autotaxine adipocytaire exacerbe l’obésité nutritionnelle et réduit l’acide lysophosphatidique plasmatique

Rodolphe Dusaulcy; Sandra Grès; Estelle Wanecq; Chloé Rancoule; André Colom; Charlotte Guigné; L A van Meeteren; Wouter H. Moolenaar; Philippe Valet; Jean Sébastien Saulnier-Blache

Collaboration


Dive into the Sandra Grès's collaboration.

Top Co-Authors

Avatar

Jean Sébastien Saulnier-Blache

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karim Nadra

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean A. Boutin

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge