Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Guauque-Olarte is active.

Publication


Featured researches published by Sandra Guauque-Olarte.


Journal of Molecular and Cellular Cardiology | 2012

ATP acts as a survival signal and prevents the mineralization of aortic valve

Nancy Côté; Diala El Husseini; Andrée Pépin; Sandra Guauque-Olarte; Valérie Ducharme; Pascale Bouchard-Cannon; Audrey Audet; Dominique Fournier; Nathalie Gaudreault; Habib Derbali; Marc D. McKee; Chantale Simard; Jean-Pierre Després; Philippe Pibarot; Yohan Bossé; Patrick Mathieu

Calcific aortic valve disease (CAVD) is a disorder related to progressive mineralization of valvular tissue that is a leading cause of heart disease. Thus far, there is no medical treatment to prevent the mineralization of aortic valves. It is generally thought that pathologic mineralization is linked to apoptosis of vascular cells. However, the role of apoptosis during mineralization as well as the survival signals for valvular interstitial cells (VICs), the main cellular component of aortic valves, remains to be identified. Here, through several lines of evidence, we show that bioavailability of extracellular ATP is a signal which determines survival or apoptosis of VICs and, in doing so, plays a major role in the development of CAVD. Specifically, in CAVD and in VIC cultures undergoing mineralization, we found a high level of the ectonucleotidase ENPP1. In addition, a genetic polymorphism in the intron 9 of the ENPP1 gene was associated with CAVD in a case-control cohort as well as with mRNA expression levels of ENPP1 in aortic valves. A high level of ENPP1 in CAVD promoted apoptosis-mediated mineralization of VICs by depleting the extracellular pool of ATP. We then documented that release of ATP by VICs promoted cell survival via the P2Y(2) receptor and the PI3K/Akt signaling pathway. Hence, our results show that level of ENPP1 modulates extracellular concentration of ATP, which is an important survival signal for VICs. These findings may help to develop novel pharmacological treatment for CAVD.


Circulation | 2016

Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1

Fayez Hadji; Marie-Chloé Boulanger; Simon-Pierre Guay; Nathalie Gaudreault; Soumiya Amellah; Guada Mkannez; Rihab Bouchareb; Joël Tremblay Marchand; Mohamed Jalloul Nsaibia; Sandra Guauque-Olarte; Philippe Pibarot; Luigi Bouchard; Yohan Bossé; Patrick Mathieu

Background: Calcific aortic valve disease is characterized by an abnormal mineralization of the aortic valve. Osteogenic activity in the aortic valve is under the control of NOTCH1, which regulates the expression of key pro-osteogenic genes such as RUNX2 and BMP2. Long noncoding RNAs (lncRNAs) may reprogram cells by altering the gene expression pattern. Methods: Multidimensional genomic profiling was performed in human aortic valves to document the expression of lncRNAs and the DNA methylation pattern in calcific aortic valve disease. In-depth functional assays were carried out to document the impact of lncRNA on the mineralization of the aortic valve. Results: We documented that lncRNA H19 (H19) was increased in calcific aortic valve disease. Hypomethylation of the promoter region was observed in mineralized aortic valves and was inversely associated with H19 expression. Knockdown and overexpression experiments showed that H19 induces a strong osteogenic phenotype by altering the NOTCH1 pathway. Gene promoter analyses showed that H19 silenced NOTCH1 by preventing the recruitment of p53 to its promoter. A knockdown of H19 in valve interstitial cells (VICs) increased the expression of NOTCH1 and decreased the level of RUNX2 and BMP2, 2 downstream targets repressed by NOTCH1. In rescue experiments, the transfection of a vector encoding for the active Notch intracellular domain prevented H19-induced mineralization of valve interstitial cells. Conclusions: These findings indicate that a dysregulation of DNA methylation in the promoter of H19 during calcific aortic valve disease is associated with a higher expression of this lncRNA, which promotes an osteogenic program by interfering with the expression of NOTCH1.


American Journal of Cardiology | 2011

Replication of Genetic Association Studies in Aortic Stenosis in Adults

Nathalie Gaudreault; Valérie Ducharme; Maxime Lamontagne; Sandra Guauque-Olarte; Patrick Mathieu; Philippe Pibarot; Yohan Bossé

Only a handful of studies have attempted to unravel the genetic architecture of calcific aortic valve stenosis (AS). The goal of this study was to validate genes previously associated with AS. Seven genes were assessed: APOB, APOE, CTGF, IL10, PTH, TGFB1, and VDR. Each gene was tested for a comprehensive set of single-nucleotide polymorphisms (SNPs). SNPs were genotyped in 457 patients who underwent surgical aortic valve replacement, and allele frequencies were compared to 3,294 controls. A missense mutation in the APOB gene was significantly associated with AS (rs1042031, E4181K, p = 0.00001). A second SNP located 5.6 kilobases downstream of the APOB stop codon was also associated with the disease (rs6725189, p = 0.000013). Six SNPs surrounding the IL10 locus were strongly associated with AS (0.02 > p > 6.2 × 10⁻¹¹). The most compelling association for IL10 was found with a promoter polymorphism (rs1800872) well known to regulate the production of the encoded anti-inflammatory cytokine. The frequency of the low-producing allele was greater in cases compared to controls (30% vs 20%, p = 6.2 × 10⁻¹¹). SNPs in PTH, TGFB1, and VDR had nominal p values <0.05 but did not resist Bonferroni correction. In conclusion, this study suggests that subjects carrying specific polymorphisms in the IL10 and APOB genes are at higher risk for developing AS.


PLOS ONE | 2011

The transcriptome of human epicardial, mediastinal and subcutaneous adipose tissues in men with coronary artery disease.

Sandra Guauque-Olarte; Nathalie Gaudreault; Marie-Ève Piché; Dominique Fournier; Pascale Mauriège; Patrick Mathieu; Yohan Bossé

Background The biological functions of epicardial adipose tissue (EAT) remain largely unknown. However, the proximity of EAT to the coronary arteries suggests a role in the pathogenesis of coronary artery disease (CAD). The objectives of this study were to identify genes differentially regulated among three adipose tissues, namely EAT, mediastinal (MAT) and subcutaneous (SAT) and to study their possible relationships with the development of cardiovascular diseases. Methods and Results Samples were collected from subjects undergoing coronary artery bypass grafting surgeries. Gene expression was evaluated in the three adipose depots of six men using the Illumina® HumanWG-6 v3.0 expression BeadChips. Twenty-three and 73 genes were differentially up-regulated in EAT compared to MAT and SAT, respectively. Ninety-four genes were down-regulated in EAT compared to SAT. However, none were significantly down-regulated in EAT compared to MAT. More specifically, the expression of the adenosine A1 receptor (ADORA1), involved in myocardial ischemia, was significantly up-regulated in EAT. Levels of the prostaglandin D2 synthase (PTGDS) gene, recently associated with the progression of atherosclerosis, were significantly different in the three pairwise comparisons (EAT>MAT>SAT). The results of ADORA1 and PTGDS were confirmed by quantitative real-time PCR in 25 independent subjects. Conclusions Overall, the transcriptional profiles of EAT and MAT were similar compared to the SAT. Despite this similarity, two genes involved in cardiovascular diseases, ADORA1 and PTGDS, were differentially up-regulated in EAT. These results provide insights about the biology of EAT and its potential implication in CAD.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Evaluation of Links Between High-Density Lipoprotein Genetics, Functionality, and Aortic Valve Stenosis Risk in Humans

Benoit J. Arsenault; Marie-Pierre Dubé; Mathieu R. Brodeur; Adriana Benjamin de Oliveira Moraes; Véronique Lavoie; Anne-Elen Kernaleguen; Sandra Guauque-Olarte; Patrick Mathieu; Philippe Pibarot; David Messika-Zeitoun; Yohan Bossé; David Rhainds; Eric Rhéaume; Jean-Claude Tardif

Objective—Studies have shown that high-density lipoprotein (HDL)–raising compounds induce regression of aortic valve stenosis (AVS) in animal models. However, whether patients with AVS have an impaired HDL metabolism is unknown. Approach and Results—A total of 1435 single nucleotide polymorphisms in genes associated with HDL cholesterol levels (in or around GALNT2, LPL, ABCA1, APOA5, SCARB1, LIPC, CETP, LCAT, LIPG, APOC4, and PLTP) were genotyped in 382 patients with echocardiography-confirmed AVS (aortic jet velocity ≥2.5 m/s) and 401 controls. After control for multiple testing, none of the genetic variants showed a positive association with case/control status (adjusted P≥0.05 for all single nucleotide polymorphisms tested). In a subsample of this cohort, HDL cholesterol levels, apolipoprotein AI levels, lecithin-cholesterol acyltransferase activity, pre–&bgr;-HDL, HDL size, and 4 parameters of cholesterol efflux capacity were measured in apolipoprotein B–depleted serum samples from 86 patients with and 86 patients without AVS. Cholesterol efflux capacity was measured using J774 macrophages with and without stimulation of ATP-binding cassette A-1 expression by cAMP, and HepG2 hepatocytes for scavenger receptor class B type 1–mediated efflux. None of these parameters were different between cases and controls. However, compared with patients without coronary artery disease, sera from patients with coronary artery disease had lower HDL cholesterol levels, scavenger receptor class B type 1–mediated efflux, and HDL size (P⩽0.003), independently of the presence or absence of AVS. Conclusions—Results of the present study suggest that, based on HDL genetics and HDL functionality, HDL metabolism does not seem to predict the risk of AVS. Because of our limited sample size, additional studies are needed to confirm these findings.


Circulation-cardiovascular Genetics | 2015

Calcium Signaling Pathway Genes RUNX2 and CACNA1C Are Associated With Calcific Aortic Valve Disease

Sandra Guauque-Olarte; David Messika-Zeitoun; Arnaud Droit; Maxime Lamontagne; Joël Tremblay-Marchand; Emilie Lavoie-Charland; Nathalie Gaudreault; Benoit J. Arsenault; Marie-Pierre Dubé; Jean-Claude Tardif; Simon C. Body; Jonathan G. Seidman; Catherine Boileau; Patrick Mathieu; Philippe Pibarot; Yohan Bossé

Background—Calcific aortic valve stenosis (AS) is a life-threatening disease with no medical therapy. The genetic architecture of AS remains elusive. This study combines genome-wide association studies, gene expression, and expression quantitative trait loci mapping in human valve tissues to identify susceptibility genes of AS. Methods and Results—A meta-analysis was performed combining the results of 2 genome-wide association studies in 474 and 486 cases from Quebec City (Canada) and Paris (France), respectively. Corresponding controls consisted of 2988 and 1864 individuals with European ancestry from the database of genotypes and phenotypes. mRNA expression levels were evaluated in 9 calcified and 8 normal aortic valves by RNA sequencing. The results were integrated with valve expression quantitative trait loci data obtained from 22 AS patients. Twenty-five single-nucleotide polymorphisms had P<5×10−6 in the genome-wide association studies meta-analysis. The calcium signaling pathway was the top gene set enriched for genes mapped to moderately AS-associated single-nucleotide polymorphisms. Genes in this pathway were found differentially expressed in valves with and without AS. Two single-nucleotide polymorphisms located in RUNX2 (runt-related transcription factor 2), encoding an osteogenic transcription factor, demonstrated some association with AS (genome-wide association studies P=5.33×10−5). The mRNA expression levels of RUNX2 were upregulated in calcified valves and associated with eQTL-SNPs. CACNA1C encoding a subunit of a voltage-dependent calcium channel was upregulated in calcified valves. The eQTL-SNP with the most significant association with AS located in CACNA1C was associated with higher expression of the gene. Conclusions—This integrative genomic study confirmed the role of RUNX2 as a potential driver of AS and identified a new AS susceptibility gene, CACNA1C, belonging to the calcium signaling pathway.


Physiological Genomics | 2016

RNA Expression Profile of Calcified Bicuspid, Tricuspid and Normal Human Aortic Valves by RNA Sequencing

Sandra Guauque-Olarte; Arnaud Droit; Joël Tremblay-Marchand; Nathalie Gaudreault; Dimitris Kalavrouziotis; François Dagenais; Jonathan G. Seidman; Simon C. Body; Philippe Pibarot; Patrick Mathieu; Yohan Bossé

The molecular mechanisms leading to premature development of aortic valve stenosis (AS) in individuals with a bicuspid aortic valve are unknown. The objective of this study was to identify genes differentially expressed between calcified bicuspid aortic valves (BAVc) and tricuspid valves with (TAVc) and without (TAVn) AS using RNA sequencing (RNA-Seq). We collected 10 human BAVc and nine TAVc from men who underwent primary aortic valve replacement. Eight TAVn were obtained from men who underwent heart transplantation. mRNA levels were measured by RNA-Seq and compared between valve groups. Two genes were upregulated, and none were downregulated in BAVc compared with TAVc, suggesting a similar gene expression response to AS in individuals with bicuspid and tricuspid valves. There were 462 genes upregulated and 282 downregulated in BAVc compared with TAVn. In TAVc compared with TAVn, 329 genes were up- and 170 were downregulated. A total of 273 upregulated and 147 downregulated genes were concordantly altered between BAVc vs. TAVn and TAVc vs. TAVn, which represent 56 and 84% of significant genes in the first and second comparisons, respectively. This indicates that extra genes and pathways were altered in BAVc. Shared pathways between calcified (BAVc and TAVc) and normal (TAVn) aortic valves were also more extensively altered in BAVc. The top pathway enriched for genes differentially expressed in calcified compared with normal valves was fibrosis, which support the remodeling process as a therapeutic target. These findings are relevant to understand the molecular basis of AS in patients with bicuspid and tricuspid valves.


Pharmacogenomics Journal | 2017

Quantitative profiling of the UGT transcriptome in human drug metabolizing tissues

Alan Tourancheau; Michèle Rouleau; Sandra Guauque-Olarte; Lyne Villeneuve; Isabelle Gilbert; Arnaud Droit; Chantal Guillemette

Alternative splicing as a mean to control gene expression and diversify function is suspected to considerably influence drug response and clearance. We report the quantitative expression profiles of the human UGT genes including alternatively spliced variants not previously annotated established by deep RNA-sequencing in tissues of pharmacological importance. We reveal a comprehensive quantification of the alternative UGT transcriptome that differ across tissues and among individuals. Alternative transcripts that comprise novel in-frame sequences associated or not with truncations of the 5′- and/or 3′- termini, significantly contribute to the total expression levels of each UGT1 and UGT2 gene averaging 21% in normal tissues, with expression of UGT2 variants surpassing those of UGT1. Quantitative data expose preferential tissue expression patterns and remodeling in favor of alternative variants upon tumorigenesis. These complex alternative splicing programs have the strong potential to contribute to interindividual variability in drug metabolism in addition to diversify the UGT proteome.


Circulation | 2015

Abstract 16338: Dna Hypomethylation in Long Non-coding Rna Promoter During Calcific Aortic Valve Stenosis: Implication for the Notch Pathway

Fayez Hadji; Marie-Chloé Boulanger; Emilie Lavoie-Charland; Nathalie Gaudreault; Sandra Guauque-Olarte; Rihab Bouchareb; Mohamed Jalloul Nsaibia; Luigi Bouchard; Yohan Bossé; Patrick Mathieu


Circulation | 2014

Abstract 16417: Role of Long Non-Coding RNAs in the Regulation of the Notch Pathway: Implication for Calcific Aortic Valve Stenosis

Fayez Hadji; Marie-Chloé Boulanger; Sandra Guauque-Olarte; Rihab Bouchareb; Yohan Bossé; Patrick Mathieu

Collaboration


Dive into the Sandra Guauque-Olarte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge