Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Hervas-Stubbs is active.

Publication


Featured researches published by Sandra Hervas-Stubbs.


Journal of Experimental Medicine | 2005

Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death

Noelia Casares; Marie O. Pequignot; Antoine Tesniere; François Ghiringhelli; Stephan Roux; Nathalie Chaput; Elise Schmitt; Ahmed Hamai; Sandra Hervas-Stubbs; Michel Obeid; Frédéric Coutant; Didier Métivier; Evelyne Pichard; Pierre Aucouturier; Gérard Pierron; Carmen Garrido; Laurence Zitvogel; Guido Kroemer

Systemic anticancer chemotherapy is immunosuppressive and mostly induces nonimmunogenic tumor cell death. Here, we show that even in the absence of any adjuvant, tumor cells dying in response to anthracyclins can elicit an effective antitumor immune response that suppresses the growth of inoculated tumors or leads to the regression of established neoplasia. Although both antracyclins and mitomycin C induced apoptosis with caspase activation, only anthracyclin-induced immunogenic cell death was immunogenic. Caspase inhibition by Z-VAD-fmk or transfection with the baculovirus inhibitor p35 did not inhibit doxorubicin (DX)-induced cell death, yet suppressed the immunogenicity of dying tumor cells in several rodent models of neoplasia. Depletion of dendritic cells (DCs) or CD8+T cells abolished the immune response against DX-treated apoptotic tumor cells in vivo. Caspase inhibition suppressed the capacity of DX-killed cells to be phagocytosed by DCs, yet had no effect on their capacity to elicit DC maturation. Freshly excised tumors became immunogenic upon DX treatment in vitro, and intratumoral inoculation of DX could trigger the regression of established tumors in immunocompetent mice. These results delineate a procedure for the generation of cancer vaccines and the stimulation of anti-neoplastic immune responses in vivo.


Nature Reviews Cancer | 2007

Immunostimulatory monoclonal antibodies for cancer therapy

Ignatio Melero; Sandra Hervas-Stubbs; Martin J. Glennie; Drew M. Pardoll; Lieping P. Chen

Increasing immune responses with immunostimulatory monoclonal antibodies (mAbs) directed to immune-receptor molecules is a new and exciting strategy in cancer therapy. This expanding class of agents functions on crucial receptors, either antagonizing those that suppress immune responses or activating others that amplify immune responses. Complications such as autoimmunity and systemic inflammation are problematic side effects associated with these agents. However, promising synergy has been observed in preclinical models using combinations of immunostimulatory antibodies and other immunotherapy strategies or conventional cancer therapies. Importantly, mAbs of this type have now entered clinical trials with encouraging initial results.


Clinical Cancer Research | 2011

Direct Effects of Type I Interferons on Cells of the Immune System

Sandra Hervas-Stubbs; Jose Luis Perez-Gracia; Ana Rouzaut; Miguel F. Sanmamed; Agnès Le Bon; Ignacio Melero

Type I interferons (IFN-I) are well-known inducers of tumor cell apoptosis and antiangiogenesis via signaling through a common receptor interferon alpha receptor (IFNAR). IFNAR induces the Janus activated kinase–signal transducer and activation of transcription (JAK-STAT) pathway in most cells, along with other biochemical pathways that may differentially operate, depending on the responding cell subset, and jointly control a large collection of genes. IFNs-I were found to systemically activate natural killer (NK) cell activity. Recently, mouse experiments have shown that IFNs-I directly activate other cells of the immune system, such as antigen-presenting dendritic cells (DC) and CD4 and CD8 T cells. Signaling through the IFNAR in T cells is critical for the acquisition of effector functions. Cross-talk between IFNAR and the pathways turned on by other surface lymphocyte receptors has been described. Importantly, IFNs-I also increase antigen presentation of the tumor cells to be recognized by T lymphocytes. These IFN-driven immunostimulatory pathways offer opportunities to devise combinatorial immunotherapy strategies. Clin Cancer Res; 17(9); 2619–27. ©2011 AACR.


British Journal of Cancer | 2009

Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes

Carlos Alfaro; Natalia Suarez; A Gonzalez; Sarai Solano; Lorena Erro; Juan Dubrot; Asis Palazon; Sandra Hervas-Stubbs; Alfonso Gurpide; José María López-Picazo; E Grande-Pulido; Ignacio Melero; Jose Luis Perez-Gracia

Vascular endothelial growth factor (VEGF) inhibits differentiation and maturation of dendritic cells (DC), suggesting a potential immunosuppressive role for this proangiogenic factor. Bevacizumab, sorafenib and sunitinib target VEGF-mediated angiogenesis and are active against several types of cancer, but their effects on the immune system are poorly understood. In this study, VEGF and supernatants of renal carcinoma cell lines cultured under hypoxia were found to alter the differentiation of human monocytes to DC. Resulting DC showed impaired activity, as assessed by the alloreactive mixed T-lymphocyte reaction. Bevacizumab and sorafenib, but not sunitinib, reversed the inhibitory effects of VEGF, but not of those mediated by tumour supernatants. Dendritic cells matured under the influence of VEGF expressed less human leukocyte antigen-DR (HLA-DR) and CD86, and this effect was restored by bevacizumab and sorafenib. Finally, tumour-cell supernatants decreased interleukin-12 (IL-12) production by mature DC, and such inhibition was not restored by any of the tested drugs, delivered either as single agents or in combination. The deleterious effects of tumour-cell supernatants were mainly mediated by thermostable molecules distinct from VEGF. These results indicate that inhibition of the differentiation of monocytes to DC is a multifactorial effect, and that they support the development of combinations of angiogenesis inhibitors with immunological modulators.


Cancer Research | 2011

Agonist Anti-CD137 mAb Act on Tumor Endothelial Cells to Enhance Recruitment of Activated T Lymphocytes

Asis Palazon; Alvaro Teijeira; Ivan Martinez-Forero; Sandra Hervas-Stubbs; Carmen Roncal; Iván Peñuelas; Juan Dubrot; Aizea Morales-Kastresana; Jose Luis Perez-Gracia; M. Carmen Ochoa; Laura Ochoa-Callejero; Alfredo Martínez; Alfonso Luque; Joseph E. Dinchuk; Ana Rouzaut; Maria Jure-Kunkel; Ignacio Melero

Agonist monoclonal antibodies (mAb) to the immune costimulatory molecule CD137, also known as 4-1BB, are presently in clinical trials for cancer treatment on the basis of their costimulatory effects on primed T cells and perhaps other cells of the immune system. Here we provide evidence that CD137 is selectively expressed on the surface of tumor endothelial cells. Hypoxia upregulated CD137 on murine endothelial cells. Treatment of tumor-bearing immunocompromised Rag(-/-) mice with agonist CD137 mAb did not elicit any measurable antiangiogenic effects. In contrast, agonist mAb stimulated tumor endothelial cells, increasing cell surface expression of the adhesion molecules intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin. When adoptively transferred into mice, activated T lymphocytes derived from CD137-deficient animals entered more avidly into tumor tissue after treatment with agonist mAb. This effect could be neutralized with anti-ICAM-1 and anti-VCAM-1 blocking antibodies. Thus, stimulation of CD137 not only enhanced T-cell activation but also augmented their trafficking into malignant tissue, through direct actions on the blood vessels that irrigate the tumor. Our findings identify an additional mechanism of action that can explain the immunotherapeutic effects of agonist CD137 antibodies.


Trends in Pharmacological Sciences | 2008

Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies

Ignacio Melero; Oihana Murillo; Juan Dubrot; Sandra Hervas-Stubbs; Jose Luis Perez-Gracia

CD137 (also known as 4-1BB) is a surface co-stimulatory glycoprotein originally described as present on activated T lymphocytes. Artificial stimulation of this molecule with monoclonal antibodies or other agonist moieties therapeutically augments the cellular immune response against tumors, regardless of the absence of CD137 on tumor cells. These pharmacological agents, when administered systemically, surpass the immune effects of the membrane-bound natural ligand (CD137 or 4-1BB ligand), the activity of which is confined to cell-to-cell interactions. Greater affinity and broader distribution of the CD137 pharmacological agonists cause much more intense receptor crosslinking and stronger intracellular signals than the natural ligand. Target engagement on a variety of immune cell types such as T, natural killer and dendritic cells and on tumor vessels could switch on multiple mechanisms of action. As an agonist, anti-CD137 monoclonal antibody has entered Phase II clinical trials; elucidation of the mechanisms behind the antitumor efficacy requires further research in mice and patients to understand and rationally combine these new treatments.


Clinical Cancer Research | 2013

Combined Immunostimulatory Monoclonal Antibodies Extend Survival in an Aggressive Transgenic Hepatocellular Carcinoma Mouse Model

Aizea Morales-Kastresana; Miguel F. Sanmamed; Inmaculada Rodriguez; Asis Palazon; Ivan Martinez-Forero; Sara Labiano; Sandra Hervas-Stubbs; Bruno Sangro; Carmen Ochoa; Ana Rouzaut; Arantza Azpilikueta; Elixabet Bolaños; Maria Jure-Kunkel; Ines Gütgemann; Ignacio Melero

Purpose: Immunostimulatory monoclonal antibodies (ISmAb) that unleash antitumor immune responses are showing efficacy in cancer clinical trials. Anti-B7-H1 (PD-L1) monoclonal antibodies (mAb) block a critical inhibitory pathway in T cells, whereas anti-CD137 and OX40 mAbs provide T-cell costimulation. A combination of these ISmAbs (anti-CD137 + anti-OX40 + anti-B7-H1) was tested using a transgenic mouse model of multifocal and rapidly progressing hepatocellular carcinoma, in which c-myc drives transformation and cytosolic ovalbumin (OVA) is expressed in tumor cells as a model antigen. Experimental Design: Flow-cytometry and immunohistochemistry were used to quantify tumor-infiltrating lymphocytes (TIL) elicited by treatment and assess their activation status and cytolytic potential. Tolerance induction and its prevention/reversal by treatment with the combination of ISmAbs were revealed by in vivo killing assays. Results: The triple combination of ISmAbs extended survival of mice bearing hepatocellular carcinomas in a CD8-dependent fashion and synergized with adoptive T-cell therapy using activated OVA-specific TCR-transgenic OT-1 and OT-2 lymphocytes. Mice undergoing therapy showed clear increases in tumor infiltration by activated and blastic CD8+ and CD4+ T lymphocytes containing perforin/granzyme B and expressing the ISmAb-targeted receptors on their surface. The triple combination of ISmAbs did not result in enhanced OVA-specific cytotoxic T lymphocyte (CTL) activity but other antigens expressed by cell lines derived from such hepatocellular carcinomas were recognized by endogenous TILs. Adoptively transferred OVA-specific OT-1 lymphocytes into tumor-bearing mice were rendered tolerant, unless given the triple mAb therapy. Conclusion: Extension of survival and dense T-cell infiltrates emphasize the translational potential of combinational immunotherapy strategies for hepatocellular carcinoma. Clin Cancer Res; 19(22); 6151–62. ©2013 AACR.


Cancer Discovery | 2012

The HIF-1α Hypoxia Response in Tumor-Infiltrating T Lymphocytes Induces Functional CD137 (4-1BB) for Immunotherapy

Asis Palazon; Ivan Martinez-Forero; Alvaro Teijeira; Aizea Morales-Kastresana; Carlos Alfaro; Miguel F. Sanmamed; Jose Luis Perez-Gracia; Iván Peñuelas; Sandra Hervas-Stubbs; Ana Rouzaut; Manuel O. Landázuri; Maria Jure-Kunkel; Julián Aragonés; Ignacio Melero

UNLABELLED The tumor microenvironment of transplanted and spontaneous mouse tumors is profoundly deprived of oxygenation as confirmed by positron emission tomographic (PET) imaging. CD8 and CD4 tumor-infiltrating T lymphocytes (TIL) of transplanted colon carcinomas, melanomas, and spontaneous breast adenocarcinomas are CD137 (4-1BB)-positive, as opposed to their counterparts in tumor-draining lymph nodes and spleen. Expression of CD137 on activated T lymphocytes is markedly enhanced by hypoxia and the prolyl-hydroxylase inhibitor dimethyloxalylglycine (DMOG). Importantly, hypoxia does not upregulate CD137 in hypoxia-inducible factor (HIF)-1α-knockout T cells, and such HIF-1α-deficient T cells remain CD137-negative even when becoming TILs, in clear contrast to co-infiltrating and co-transferred HIF-1α-sufficient T lymphocytes. The fact that CD137 is selectively expressed on TILs was exploited to confine the effects of immunotherapy with agonist anti-CD137 monoclonal antibodies to the tumor tissue. As a result, low-dose intratumoral injections avoid liver inflammation, achieve antitumor systemic effects, and permit synergistic therapeutic effects with PD-L1/B7-H1 blockade. SIGNIFICANCE CD137 (4-1BB) is an important molecular target to augment antitumor immunity. Hypoxia in the tumor microenvironment as sensed by the HIF-1α system increases expression of CD137 on tumor-infiltrating lymphocytes that thereby become selectively responsive to the immunotherapeutic effects of anti-CD137 agonist monoclonal antibodies as those used in ongoing clinical trials.


Infection and Immunity | 2006

High Frequency of CD4+ T Cells Specific for the TB10.4 Protein Correlates with Protection against Mycobacterium tuberculosis Infection

Sandra Hervas-Stubbs; Laleh Majlessi; Marcela Simsova; Jana Morova; Marie-Jésus Rojas; Clémence Nouzé; Priscille Brodin; Peter Sebo; Claude Leclerc

ABSTRACT TB10.4 is a newly identified antigen of Mycobacterium tuberculosis recognized by human and murine T cells upon mycobacterial infection. Here, we show that immunization with Mycobacterium bovis BCG induces a strong, genetically controlled, Th1 immune response against TB10.4 in mice. BALB/c and C57BL/6 strains behave as high and low responders to TB10.4 protein, respectively. The TB10.4:74-88 peptide was identified as an immunodominant CD4+ T-cell epitope for H-2d mice. Since recent results, as well as the present study, have raised interest in TB10.4 as a subunit vaccine, we analyzed immune responses induced by this antigen delivered by a new vector, the adenylate cyclase (CyaA) of Bordetella pertussis. CyaA is able to target dendritic cells and to deliver CD4+ or CD8+ T-cell epitopes to the major histocompatibility complex class II/I molecule presentation pathways, triggering specific Th1 or cytotoxic T-lymphocyte (CTL) responses. Several CyaA harboring either the entire TB10.4 protein or various subfragments containing the TB10.4:20-28 CTL epitope were shown to induce TB10.4-specific Th1 CD4+ and CD8+ T-cell responses. However, none of the recombinant CyaA, injected in the absence of adjuvant, was able to induce protection against M. tuberculosis infection. In contrast, TB10.4 protein administered with a cocktail of strong adjuvants that triggered a strong Th1 CD4+ T-cell response induced significant protection against M. tuberculosis challenge. These results confirm the potential value of the TB10.4 protein as a candidate vaccine and show that the presence of high frequencies of CD4+ T cells specific to this strong immunogen correlates with protection against M. tuberculosis infection.


Clinical Cancer Research | 2008

Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma.

Oihana Murillo; Ainhoa Arina; Sandra Hervas-Stubbs; Anjana Gupta; Brandon McCluskey; Juan Dubrot; Asis Palazon; Arantza Azpilikueta; Maria C. Ochoa; Carlos Alfaro; Sarai Solano; Jose Luis Perez-Gracia; Babatunde O. Oyajobi; Ignacio Melero

Purpose: Eradication of post-treatment residual myeloma cells is needed to prevent relapses, and immunostimulatory monoclonal antibodies (mAb) such as anti-CD137, CTLA-4, CD40, etc., which enhance the immune response against malignancies, represent a means of achieving this purpose. This study explores anti-CD137 mAbs for multiple myeloma treatment in preclinical models of the disease because they safely augment tumor immunity and are in clinical trials for other cancers. Experimental Design: The antitumor effect of anti-CD137 mAb on mouse plasmacytomas derived from HOPC and NS0 cell lines was studied and compared with that of anti-CTLA-4, anti-CD40, and anti-ICAM-2 mAbs. The antitumor effect of anti-CD137 mAb was also examined in a mouse syngeneic disseminated myeloma (5TGM1) model, which more closely resembles human multiple myeloma. Depletions of specific cell populations and gene-targeted mice were used to unravel the requirements for tumor rejection. Results: Agonistic mAb against CD137 and blocking anti-CTLA-4 mAb showed activity against i.p. HOPC tumors, resulting in extended survival of mice that also became immune to rechallenge. Anti-CD137 mAbs induced complete eradications of established s.c. NS0-derived tumors that were dependent on IFN-γ, natural killer cells, and CD8+ T lymphocytes. Natural killer cells accumulated in tumor draining lymph nodes and showed increased IFN-γ production. Antitumor efficacy of anti-CD137 mAb was preserved in CD28-deficient mice despite the fact that CD28 signaling increases the expression of CD137 on CD8+ T cells. Importantly, anti-CD137 mAb treatment significantly decreased systemic tumor burden in the disseminated 5TGM1 model. Conclusions: The immune-mediated antitumor activity of anti-CD137 mAb in mouse models holds promise for myeloma treatment in humans.

Collaboration


Dive into the Sandra Hervas-Stubbs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge