Sandra Iuliano
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Iuliano.
Journal of Bone and Mineral Research | 2014
Yohann Bala; Roger Zebaze; Ali Ghasem-Zadeh; Elizabeth J. Atkinson; Sandra Iuliano; James M. Peterson; Shreyasee Amin; Åshild Bjørnerem; L. Joseph Melton; Helena Johansson; John A. Kanis; Sundeep Khosla; Ego Seeman
Most fragility fractures arise among the many women with osteopenia, not the smaller number with osteoporosis at high risk for fracture. Thus, most women at risk for fracture assessed only by measuring areal bone mineral density (aBMD) will remain untreated. We measured cortical porosity and trabecular bone volume/total volume (BV/TV) of the ultradistal radius (UDR) using high‐resolution peripheral quantitative computed tomography, aBMD using densitometry, and 10‐year fracture probability using the country‐specific fracture risk assessment tool (FRAX) in 68 postmenopausal women with forearm fractures and 70 age‐matched community controls in Olmsted County, MN, USA. Women with forearm fractures had 0.4 standard deviations (SD) higher cortical porosity and 0.6 SD lower trabecular BV/TV. Compact‐appearing cortical porosity predicted fracture independent of aBMD; odds ratio (OR) = 1.92 (95% confidence interval [CI] 1.10–3.33). In women with osteoporosis at the UDR, cortical porosity did not distinguish those with fractures from those without because high porosity was present in 92% and 86% of each group, respectively. By contrast, in women with osteopenia at the UDR, high porosity of the compact‐appearing cortex conferred an OR for fracture of 4.00 (95% CI 1.15–13.90). In women with osteoporosis, porosity is captured by aBMD, so measuring UDR cortical porosity does not improve diagnostic sensitivity. However, in women with osteopenia, cortical porosity was associated with forearm fractures.
Journal of Bone and Mineral Research | 2015
Yohann Bala; Quang Minh Bui; Xiaofang Wang; Sandra Iuliano; Qingju Wang; Ali Ghasem-Zadeh; Tamara D. Rozental; Mary L. Bouxsein; Roger Zebaze; Ego Seeman
Fragility fractures commonly involve metaphyses. The distal radius is assembled with a thin cortex formed by fusion (corticalization) of trabeculae arising from the periphery of the growth plate. Centrally positioned trabeculae reinforce the thin cortex and transfer loads from the joint to the proximal thicker cortical bone. We hypothesized that growth‐ and age‐related deficits in trabecular bone disrupt this frugally assembled microarchitecture, producing bone fragility. The microarchitecture of the distal radius was measured using high‐resolution peripheral quantitative computed tomography in 135 females with distal radial fractures, including 32 girls (aged 7 to 18 years), 35 premenopausal women (aged 18 to 44 years), and 68 postmenopausal women (aged 50 to 76 years). We also studied 240 fracture‐free controls of comparable age and 47 healthy fracture‐free premenopausal mother‐daughter pairs (aged 30 to 55 and 7 to 20 years, respectively). In fracture‐free girls and pre‐ and postmenopausal women, fewer or thinner trabeculae were associated with a smaller and more porous cortical area (r = 0.25 to 0.71 after age, height, and weight adjustment, all p < 0.05). Fewer and thinner trabeculae in daughters were associated with higher cortical porosity in their mothers (r = 0.30 to 0.47, all p < 0.05). Girls and premenopausal and postmenopausal women with forearm fractures had 0.3 to 0.7 standard deviations (SD) fewer or thinner trabeculae and higher cortical porosity than controls in one or more compartment; one SD trait difference conferred odds ratio (95% confidence interval) for fracture ranging from 1.56 (1.01–2.44) to 4.76 (2.86–7.69). Impaired trabecular corticalization during growth, and cortical and trabecular fragmentation during aging, may contribute to the fragility of the distal radius.
Journal of Nutrition Health & Aging | 2013
Sandra Iuliano; Julie Woods; J. Robbins
ObjetivesLow-level aged-care residents are at risk of malnutrition. Oral supplements and fortified foods used to treat malnutrition in the elderly require special preparation and administration by staff. Therefore we aimed to determine if increasing dairy food intake in residents by two serves per day would improve energy and nutrient intakes and prevent malnutrition in residents.DesignProspective intervention study.Setting2 intervention and 2 control low-level aged-care facilities in Melbourne, Australia.Participants130 residents (n = 68 intervention, 78% female, mean age 86.5 years).InterventionThis feasibility study was a 4-week intervention where menus were modified to include at least two additional serves of dairy food/day. Control facilities consumed from their regular menus.MeasurementsMean macro- and micro-nutrient intakes before and after intervention and over the same time period in controls were recorded using observed intake (food served minus waste) and changes over time determined using paired t-tests. Comparison in proportion of residents meeting nutritional requirements was determined using Chi-square distribution test.ResultsFollowing intervention, daily increases in mean energy intake (900kJ, P<0.001), protein intake (+25g, P<0.0001), proportion of energy from protein (+4%, P<0.0001) and proportion of estimated energy requirements (EER) (+18%, P<0.0001) were observed, while proportion of energy from fat decreased (−3%, P<0.0001). In controls mean energy intake remained below the EER, and protein intake remained unchanged. Increases in mean daily micronutrient intakes were observed for numerous nutrients including calcium (+679mg, P<0.0001), vitamin D (+1.4μg, P<0.0001), phosphorus (+550mg, P<0.0001), and zinc (+2.8mg, P<0.0001), which remained unchanged in control residents. Calcium and zinc intakes achieved recommended intake levels on the higher dairy diet, but were below recommended levels in controls. Mean sodium intakes remained unchanged. During intervention a greater proportion of residents achieved the EER for energy and the RDI for protein and calcium compared to controls.ConclusionTwo additional serves of dairy food can significantly improve nutrient intake in aged-care residents and its ease of provision makes it a viable option to potentially prevent malnutrition..
Journal of Nutrition Health & Aging | 2013
Sandra Iuliano; A. Olden; Julie Woods
ObjetivesInstitutionalized elderly are at high risk of malnutrition, including those residing in low-level aged-care and able to self-feed. We used comprehensive dietary intake assessments to determine the nutritional adequacy of food served to residents and if food waste contributed to insufficient nutrient intakes.DesignCross sectional.Setting18 low-level aged care facilities.Participants199 residents (mean age 86.7 yrs, 76% females).MeasurementsDietary data using 3-6 day weighed food records. Foods were categorized into main food groups (grains, fruit, vegetables, meats, dairy and ‘extra’) and quantified based on recommended serving sizes. Chi squared test was used to determine sex differences in proportion of residents below recommended intake levels.ResultsResidents were provided with sufficient serves of fruit (> 2) and meats (> 1), but not dairy (< 3), vegetables (< 5) and grain foods (women only, < 4), and excess serves of ‘extra’ foods (> 2). Mean dietary intakes did not meet recommendations for calcium, zinc, magnesium, potassium, folate and dietary fibre with many residents not meeting energy and protein requirements. Sodium intake was up to 3 times higher than recommended, and sugars consumed in excess. Food waste was 0-15% and resulted in men not consuming recommended serves of grain foods. ‘Extra’ foods contributed substantially to energy intake but provided few of the required nutrients.ConclusionSubstituting some ‘extra’ foods for serves of dairy, vegetables and wholegrain foods would improve the nutritional quality of foods, without altering food volume, so is feasible to improve nutritional status in elderly aged-care residents.
International Journal of Stroke | 2015
Karen Borschmann; Marco Y.C. Pang; Sandra Iuliano; Leonid Churilov; Amy Brodtmann; Elif I. Ekinci; Julie Bernhardt
Rationale and aim Stroke survivors experience accelerated bone loss and increased fracture risk, particularly in paretic weight bearing limbs. Understanding how these changes unfold and their relationship to stroke severity and physical activity could help in the development of targeted interventions to prevent or reduce the severity of these outcomes. The primary aim of this study is to investigate the time course and magnitude of changes in volumetric bone mineral density within the first year after stroke, and to examine relationships with physical activity and motor recovery. Design This is a prospective, observational study of 43 nondiabetic, nonambulant adults with first ever hemispheric stroke. Primary outcome The primary outcome was the difference in six-month change of total volumetric bone mineral density between paretic and nonparetic distal tibiae, measured at 7% of bone length site using high-resolution peripheral quantitative computed tomography. Secondary outcomes The secondary outcomes are cortical and trabecular volumetric bone mineral density, cortical thickness, and total and cross-sectional areas of distal tibiae and radii of paretic and nonparetic limbs. Also included are total body and regional bone mineral density derived using dual-energy X-ray absorptiometry, physical activity measured using accelerometry, and motor recovery (Chedoke McMaster Stroke Assessment). Discussion Measuring the timing and magnitude of changes to volumetric bone mineral density and bone structure from immediately after stroke, and relationships between these changes with physical activity and motor recovery will provide the basis for targeted interventions to reduce fracture risk in stroke survivors.
Bone | 2017
Ali Ghasem-Zadeh; Andrew J. Burghardt; Xiaofang Wang; Sandra Iuliano; Serena Bonaretti; Minh Bui; Roger Zebaze; Ego Seeman
INTRODUCTION Individuals differ in forearm length. As microstructure differs along the radius, we hypothesized that errors may occur when sexual and racial dimorphisms are quantified at a fixed distance from the radio-carpal joint. METHODS Microstructure was quantified ex vivo in 18 cadaveric radii using high resolution peripheral quantitative computed tomography and in vivo in 158 Asian and Caucasian women and men at a fixed region of interest (ROI), a corrected ROI positioned at 4.5-6% of forearm length and using the fixed ROI adjusted for cross sectional area (CSA), forearm length or height. Secular effects of age were assessed by comparing 38 younger and 33 older women. RESULTS Ex vivo, similar amounts of bone mass fashioned adjacent cross sections. Larger distal cross sections had thinner porous cortices of lower matrix mineral density (MMD), a larger medullary CSA and higher trabecular density. Smaller proximal cross-sections had thicker less porous cortices of higher MMD, a small medullary canal with little trabecular bone. Taller persons had more distally positioned fixed ROIs which moved proximally when corrected. Shorter persons had more proximally positioned fixed ROIs which moved distally when corrected, so dimorphisms lessened. In the corrected ROIs, in Caucasians, women had 0.6 SD higher porosity and 0.6 SD lower trabecular density than men (p<0.01). In Asians, women had 0.25 SD higher porosity (NS) and 0.5 SD lower trabecular density than men (p<0.05). In women, Asians had 0.8 SD lower porosity and 0.3 SD higher trabecular density than Caucasians (p<0.01). In men, Asians and Caucasians had similar porosity and trabecular density. Results were similar using an adjusted fixed ROI. Adjusting for secular effects of age on forearm length resulted in the age-related increment in porosity increasing from 2.08 SD to 2.48 SD (p<0.05). CONCLUSION Assessment of sex, race and age related differences in microstructure requires measurement of anatomically equivalent regions.
British Journal of Nutrition | 2017
Sandra Iuliano; Shirley Poon; Xiaofang Wang; Minh Bui; Ego Seeman
Malnutrition in institutionalised elderly increases morbidity and care costs. Meat and dairy foods are high-quality protein sources so adequate intakes may reduce malnutrition risk. We aimed to determine whether inadequate intakes of meat and dairy foods contribute to malnutrition in institutionalised elderly. This cross-sectional study involved 215 elderly residents (70·2 % females, mean age 85·8 years) from twenty-one aged-care facilities in Melbourne, Australia. Dietary intake was assessed using observed plate waste. Food groups and serving sizes were based on the Australian Guide to Healthy Eating. Nutrient content was analysed using a computerised nutrient analysis software (Xyris). Malnutrition risk was assessed using the Mini Nutrition Assessment (MNA) tool; a score between 24 and 30 indicates normal nutritional status. Data were analysed using robust regression. Mean MNA score was 21·6 (sd 2·7). In total, 68 % of residents were malnourished or at risk of malnutrition (MNA score≤23·5). Protein intake was 87 (sd 28) % of the Australian recommended dietary intake (RDI). Consumption averaged 1 serving each of dairy foods and meat daily. Number of dairy and meat servings related to proportion of protein RDI (both P<0·001), with the former contributing 13 % and the latter 12 % to protein RDI. Number of dairy servings (P<0·001), but not meat servings increased MNA score; each dairy serving was associated with a 1 point increase in MNA score so based on current intakes, on average if residents consumed the recommend four dairy servings (addition of 3 points to MNA score) they would achieve normal nutrition status (>24 points). Provision of meat and dairy foods did not meet recommended levels. On the basis of current dietary intakes in aged-care residents, increasing consumption of dairy foods to the recommended four servings daily ensures protein adequacy and may reduce malnutrition risk in institutionalised elderly, and so reduce risk of comorbidities and costs associated with malnutrition.
PLOS ONE | 2017
Karen Borschmann; Sarah S J Rewell; Sandra Iuliano; Ali Ghasem-Zadeh; Rachel A. Davey; Heidi Ho; Peta Skeers; Julie Bernhardt; David W. Howells
Background Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans. Objective To investigate the skeletal effect of middle cerebral artery occlusion (MCAo) stroke in rats and examine its utility as a model of human post-stroke bone loss. Methods Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV) measured by Micro-CT (10.5 micron istropic voxel size) at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults) and physical activity (cage monitoring) were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX) were assessed at baseline, and days 7 and 27. Results No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046) at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9) and total volume (6.4%, IQR 1.2, 7.6) were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals. Conclusion MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss.
European Stroke Journal | 2017
Karen Borschmann; Elif I. Ekinci; Sandra Iuliano; Leonid Churilov; Marco Y.C. Pang; Julie Bernhardt
Introduction Deranged glycaemic control is common post-stroke, increasing risks of recurrent stroke and development of diabetes. The aim of the study is to examine glucose metabolism in relation to body composition, physical activity and sedentary time post-stroke. Patients and methods Observational study: Non-diabetic adults, unable to walk independently, were recruited within 2 weeks of first stroke. Primary outcome: 2-h glucose level (mmol/l, oral glucose tolerance test), assessed at baseline and 6 months. Homeostasis Model Assessment of Insulin Sensitivity, total body fat and lean mass (dual energy X-ray absorptiometry), sedentary time (lying or sitting), standing and walking (PAL2 accelerometer) were assessed at baseline, 1, 3 and 6 months. Generalised estimating equations were used to examine change over time and associations between outcome measures. Results Thirty-six participants (69.5 years (standard deviation 11.7), 13 (36.1%) female, moderate stroke severity (National Institute of Health Stroke Scale 11.5 (interquartile range 9.75, 16)). Within 6 months, adjusting for age and National Institute of Health Stroke Scale, every month 2-h glucose reduced by 4.5% (p < 0.001), Homeostasis Model Assessment of Insulin Sensitivity improved 3% (p = 0.04) and fat mass decreased 490 g (95% confidence interval 325, 655; p = 0.01). For every extra kilogram of body fat, 2-h glucose increased by 1.02 mmol/L (95% confidence interval 1.01, 1.02; p = 0.001); Homeostasis Model Assessment of Insulin Sensitivity reduced by 0.98% (95% confidence interval 0.97, 0.99; p = 0.001). Time spent sedentary reduced from 98.5% of measurement period (interquartile range 94.3, 99.8) to 74.3% (interquartile range 65.5, 88.6), by 2.8% monthly (95% confidence interval 1.8, 3.9, p < 0.001). For every additional 5% sedentary time, 2-h glucose increased by 1.05 mmol/L (95% confidence interval 1.04, 1.07; p < 0.001). Conclusion Reducing sedentary time and fat mass within 6 months of stroke may improve glucose tolerance and insulin resistance.
International Journal of Circumpolar Health | 2015
Sandra Iuliano; Jeff Ayton
Background Early Antarctic expeditions were plagued by nutrient deficiencies, due to lack of fresh food and reliance on preserved foods. Modern Antarctic expeditioners also require provisions to be shipped in, but improved knowledge and storage options ensure foods are nutritionally sound. Despite this, nutritional imbalances are observed. Objectives To determine the adequacy of dietary intake of Antarctic expeditioners, with reference to bone health. Design Dietary intake was determined on 225 adults (mean age 42±11 years, 16% female) during 12-month deployments at Australian Antarctic stations from 2004 to 2010, using weighed 3-day food records. Nutrient intake was analysed using FoodWorks. Foods were divided into the 5 food groups according to the Australian Guide to Healthy Eating. Results Men consumed below the recommended levels [recommended daily intake (RDI)/adequate intakes (AI)] of calcium (79±42% of RDI, p<0.001), magnesium (83±34% of RDI, p<0.001), potassium (86±29% of AI, p<0.001) and fibre (75±30% of AI, p<0.001), and above the upper limit (UL) for sodium (125±48% of UL p<0.001), whereas women consumed below the recommended levels of calcium (68±21% of RDI, p<0.001) and iron (73±37% of RDI, p<0.001). Vitamin D intake is not substantial (<150 IU/d). Men consumed more alcohol than women (18±24 g/d vs. 10±13 g/d, p<0.05), nearer the guideline of ≤20 g/d. Men and women consumed approximately 1 serving of dairy food per day, and 3 of 5 recommended vegetable servings. Discretionary foods were consumed in excess of recommended. Conclusions Improving consumption of calcium-rich (dairy) foods better supports bone health during sunlight deprivation. Increasing vegetable intake to recommended levels will increase fibre, potassium and magnesium intakes. The challenge is the logistics of providing these foods throughout the year.Background Early Antarctic expeditions were plagued by nutrient deficiencies, due to lack of fresh food and reliance on preserved foods. Modern Antarctic expeditioners also require provisions to be shipped in, but improved knowledge and storage options ensure foods are nutritionally sound. Despite this, nutritional imbalances are observed. Objectives To determine the adequacy of dietary intake of Antarctic expeditioners, with reference to bone health. Design Dietary intake was determined on 225 adults (mean age 42±11 years, 16% female) during 12-month deployments at Australian Antarctic stations from 2004 to 2010, using weighed 3-day food records. Nutrient intake was analysed using FoodWorks. Foods were divided into the 5 food groups according to the Australian Guide to Healthy Eating. Results Men consumed below the recommended levels [recommended daily intake (RDI)/adequate intakes (AI)] of calcium (79±42% of RDI, p<0.001), magnesium (83±34% of RDI, p<0.001), potassium (86±29% of AI, p<0.001) and fibre (75±30% of AI, p<0.001), and above the upper limit (UL) for sodium (125±48% of UL p<0.001), whereas women consumed below the recommended levels of calcium (68±21% of RDI, p<0.001) and iron (73±37% of RDI, p<0.001). Vitamin D intake is not substantial (<150 IU/d). Men consumed more alcohol than women (18±24 g/d vs. 10±13 g/d, p<0.05), nearer the guideline of ≤20 g/d. Men and women consumed approximately 1 serving of dairy food per day, and 3 of 5 recommended vegetable servings. Discretionary foods were consumed in excess of recommended. Conclusions Improving consumption of calcium-rich (dairy) foods better supports bone health during sunlight deprivation. Increasing vegetable intake to recommended levels will increase fibre, potassium and magnesium intakes. The challenge is the logistics of providing these foods throughout the year.