Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra J. Hoffman is active.

Publication


Featured researches published by Sandra J. Hoffman.


Journal of Pharmacology and Experimental Therapeutics | 2008

Systemic Activation of the Transient Receptor Potential Vanilloid Subtype 4 Channel Causes Endothelial Failure and Circulatory Collapse: Part 2

Robert N. Willette; Weike Bao; Sandhya S. Nerurkar; Tian-Li Yue; Chris P. Doe; Gerald Stankus; Gregory H. Turner; Haisong Ju; Heath Thomas; Cindy E. Fishman; Anthony C. Sulpizio; David J. Behm; Sandra J. Hoffman; Zuojun Lin; Irina M. Lozinskaya; Linda N. Casillas; Min Lin; Robert E. Lee Trout; Bartholomew J. Votta; Kevin S. Thorneloe; Erin S. R. Lashinger; David J Figueroa; Robert W. Marquis; Xiaoping Xu

The transient receptor potential (TRP) vanilloid subtype 4 (V4) is a nonselective cation channel that exhibits polymodal activation and is expressed in the endothelium, where it contributes to intracellular Ca2+ homeostasis and regulation of cell volume. The purpose of the present study was to evaluate the systemic cardiovascular effects of GSK1016790A, a novel TRPV4 activator, and to examine its mechanism of action. In three species (mouse, rat, and dog), the i.v. administration of GSK1016790A induced a dose-dependent reduction in blood pressure, followed by profound circulatory collapse. In contrast, GSK1016790A had no acute cardiovascular effects in the TRPV4−/− null mouse. Hemodynamic analyses in the dog and rat demonstrate a profound reduction in cardiac output. However, GSK1016790A had no effect on rate or contractility in the isolated, buffer-perfused rat heart, and it produced potent endothelial-dependent relaxation of rodent-isolated vascular ring segments that were abolished by nitric-oxide synthase (NOS) inhibition (N-nitro-l-arginine methyl ester; l-NAME), ruthenium red, and endothelial NOS (eNOS) gene deletion. However, the in vivo circulatory collapse was not altered by NOS inhibition (l-NAME) or eNOS gene deletion but was associated with (concentration and time appropriate) profound vascular leakage and tissue hemorrhage in the lung, intestine, and kidney. TRPV4 immunoreactivity was localized in the endothelium and epithelium in the affected organs. GSK1016790A potently induced rapid electrophysiological and morphological changes (retraction/condensation) in cultured endothelial cells. In summary, inappropriate activation of TRPV4 produces acute circulatory collapse associated with endothelial activation/injury and failure of the pulmonary microvascular permeability barrier. It will be important to determine the role of TRPV4 in disorders associated with edema and microvascular congestion.


Journal of Bone and Mineral Research | 2001

Potent and Selective Inhibition of Human Cathepsin K Leads to Inhibition of Bone Resorption In Vivo in a Nonhuman Primate

George B. Stroup; Michael W. Lark; Daniel F. Veber; Amit Bhattacharyya; Simon M. Blake; Lauren Dare; Karl F. Erhard; Sandra J. Hoffman; Ian E. James; Robert W. Marquis; Yu Ru; Janice A. Vasko-Moser; Brian R. Smith; Thadeus Tomaszek; Maxine Gowen

Cathepsin K is a cysteine protease that plays an essential role in osteoclast‐mediated degradation of the organic matrix of bone. Knockout of the enzyme in mice, as well as lack of functional enzyme in the human condition pycnodysostosis, results in osteopetrosis. These results suggests that inhibition of the human enzyme may provide protection from bone loss in states of elevated bone turnover, such as postmenopausal osteoporosis. To test this theory, we have produced a small molecule inhibitor of human cathepsin K, SB‐357114, that potently and selectively inhibits this enzyme (Ki = 0.16 nM). This compound potently inhibited cathepsin activity in situ, in human osteoclasts (inhibitor concentration [IC]50 = 70 nM) as well as bone resorption mediated by human osteoclasts in vitro (IC50 = 29 nM). Using SB‐357114, we evaluated the effect of inhibition of cathepsin K on bone resorption in vivo using a nonhuman primate model of postmenopausal bone loss in which the active form of cathepsin K is identical to the human orthologue. A gonadotropin‐releasing hormone agonist (GnRHa) was used to render cynomolgus monkeys estrogen deficient, which led to an increase in bone turnover. Treatment with SB‐357114 (12 mg/kg subcutaneously) resulted in a significant reduction in serum markers of bone resorption relative to untreated controls. The effect was observed 1.5 h after the first dose and was maintained for 24 h. After 5 days of dosing, the reductions in N‐terminal telopeptides (NTx) and C‐terminal telopeptides (CTx) of type I collagen were 61% and 67%, respectively. A decrease in serum osteocalcin of 22% was also observed. These data show that inhibition of cathepsin K results in a significant reduction of bone resorption in vivo and provide further evidence that this may be a viable approach to the treatment of postmenopausal osteoporosis.


Bone | 2002

A Potent Small Molecule, Nonpeptide Inhibitor of Cathepsin K (SB 331750) Prevents Bone Matrix Resorption in the Ovariectomized Rat

M.W Lark; George B. Stroup; Ian E. James; R.A Dodds; Shing-Mei Hwang; Simon M. Blake; B.A Lechowska; Sandra J. Hoffman; B.R Smith; R Kapadia; Xiaoguang Liang; K Erhard; Y Ru; X Dong; Robert W. Marquis; D Veber; Maxine Gowen

Inhibition of the cyteine proteinase, cathepsin K (E.C. 3.4.22.38) has been postulated as a means to control osteoclast-mediated bone resorption. The preferred animal models for evaluation of antiresorptive activity are in the rat. However, the development of compounds that inhibit rat cathepsin K has proven difficult because the human and rat enzymes differ in key residues in the active site. In this study, a potent, nonpeptide inhibitor of rat cathepsin K (K(i) = 4.7 nmol/L), 5-(2-morpholin-4-yl-ethoxy)-benzofuran-2-carboxylic acid ((S)-3-methyl-1-(3-oxo-1-[2-(3-pyridin-2-yl-phenyl)-ethenoyl]-azepan-4-ylcarbanoyl)-butyl)-amide (SB 331750), is described, which is efficacious in rat models of bone resorption. SB 331750 potently inhibited human cathepsin K activity in vitro (K(i) = 0.0048 nmol/L) and was selective for human cathepsin K vs. cathepsins B (K(i) = 100 nmol/L), L (0.48 nmol/L), or S (K(i) = 14.3 nmol/L). In an in situ enzyme assay, SB 331750 inhibited osteoclast-associated cathepsin activity in tissue sections containing human osteoclasts (IC(50) approximately 60 nmol/L) and this translated into potent inhibition of human osteoclast-mediated bone resorption in vitro (IC(50) approximately 30 nmol/L). In vitro, SB 331750 partially, but dose-dependently, prevented the parathyroid hormone-induced hypercalcemia in an acute rat model of bone resorption. To evaluate the ability of SB 331750 to inhibit bone matrix degradation in vivo, it was administered for 4 weeks at 3, 10, or 30 mg/kg, intraperitoneally (i.p.), u.i.d. in the ovariectomized (ovx) rat. Both 10 and 30 mg/kg doses of compound prevented the ovx-induced elevation in urinary deoxypyridinoline and prevented the ovx-induced increase in percent eroded perimeter. Histological evaluation of the bones from compound-treated animals indicated that SB 331750 retarded bone matrix degradation in vivo at all three doses. The inhibition of bone resorption at the 10 and 30 mg/kg doses resulted in prevention of the ovx-induced reduction in percent trabecular area, trabecular number, and increase in trabecular spacing. These effects on bone resorption were also reflected in inhibition of the ovx-induced loss in trabecular bone volume as assessed using microcomputerized tomography (microCT; approximately 60% at 30 mg/kg). Together, these data indicate that the cathepsin K inhibitor, SB 331750, prevented bone resorption in vivo and this inhibition resulted in prevention of ovariectomy-induced loss in trabecular structure.


ACS Medicinal Chemistry Letters | 2013

Discovery of Small Molecule RIP1 Kinase Inhibitors for the Treatment of Pathologies Associated with Necroptosis.

Philip A. Harris; Deepak Bandyopadhyay; Scott B. Berger; Nino Campobasso; Carol Capriotti; Julie A. Cox; Lauren Dare; Joshua N. Finger; Sandra J. Hoffman; Kirsten M. Kahler; Ruth Lehr; John D. Lich; Rakesh Nagilla; Robert T. Nolte; Michael T. Ouellette; Christina S. Pao; Michelle Schaeffer; Angela Smallwood; Helen H. Sun; Barbara A. Swift; Rachel Totoritis; Paris Ward; Robert W. Marquis; John Bertin; Peter J. Gough

Potent inhibitors of RIP1 kinase from three distinct series, 1-aminoisoquinolines, pyrrolo[2,3-b]pyridines, and furo[2,3-d]pyrimidines, all of the type II class recognizing a DLG-out inactive conformation, were identified from screening of our in-house kinase focused sets. An exemplar from the furo[2,3-d]pyrimidine series showed a dose proportional response in protection from hypothermia in a mouse model of TNFα induced lethal shock.


Bone | 2010

An orally active calcium-sensing receptor antagonist that transiently increases plasma concentrations of PTH and stimulates bone formation

Sanjay Kumar; Christopher Matheny; Sandra J. Hoffman; Robert W. Marquis; Maggie Schultz; Xiaoguang Liang; Janice A. Vasko; George B. Stroup; Vernal Vaden; Hyking Haley; John Fox; Eric G. Delmar; Edward F. Nemeth; Amparo M. Lago; James F. Callahan; Pradip K. Bhatnagar; William F. Huffman; Maxine Gowen; Bingming Yi; Theodore M. Danoff; Lorraine A. Fitzpatrick

Daily subcutaneous administration of exogenous parathyroid hormone (PTH) promotes bone formation in patients with osteoporosis. Here we describe two novel, short-acting calcium-sensing receptor antagonists (SB-423562 and its orally bioavailable precursor, SB-423557) that elicit transient PTH release from the parathyroid gland in several preclinical species and in humans. In an ovariectomized rat model of bone loss, daily oral administration of SB-423557 promoted bone formation and improved parameters of bone strength at lumbar spine, proximal tibia and midshaft femur. Chronic administration of SB-423557 did not increase parathyroid cell proliferation in rats. In healthy human volunteers, single doses of intravenous SB-423562 and oral SB-423557 elicited transient elevations of endogenous PTH concentrations in a profile similar to that observed with subcutaneously administered PTH. Both agents were well tolerated in humans. Transient increases in serum calcium, an expected effect of increased parathyroid hormone concentrations, were observed post-dose at the higher doses of SB-423557 studied. These data constitute an early proof of principle in humans and provide the basis for further development of this class of compound as a novel, orally administered bone-forming treatment for osteoporosis.


Journal of Bone and Mineral Research | 2001

Antagonism of the osteoclast vitronectin receptor with an orally active nonpeptide inhibitor prevents cancellous bone loss in the ovariectomized rat.

Michael W. Lark; George B. Stroup; Robert A. Dodds; Rasesh Kapadia; Sandra J. Hoffman; Shing Mei Hwang; Ian E. James; Beata Lechowska; Xiaoguang Liang; David J. Rieman; Kevin L. Salyers; Keith W. Ward; Brian R. Smith; William H. Miller; William F. Huffman; Maxine Gowen

An orally active, nonpeptide Arg‐Gly‐Asp (RGD) mimetic αvβ3 antagonist, (S)‐3‐Oxo‐8‐[2‐[6‐(methylamino)pyridin‐2‐yl]‐1‐ethoxy]‐2‐(2,2,2‐trifluoroethyl)‐2,3,4,5‐tetrahydro‐1H‐2‐benzazepine‐4‐acetic acid (compound 1), has been generated, which prevented net bone loss and inhibited cancellous bone turnover in vivo. The compound binds αvβ3 and the closely related integrin αvβ5 with low nanomolar affinity but binds only weakly to the related integrins αIIbβ3, and α5β1. Compound 1 inhibited αvβ3‐mediated cell adhesion with an IC50 = 3 nM. More importantly, the compound inhibited human osteoclast‐mediated bone resorption in vitro with an IC50 = 11 nM. In vivo, compound 1 inhibited bone resorption in a dose‐dependent fashion, in the acute thyroparathyroidectomized (TPTX) rat model of bone resorption with a circulating EC50 ∼ 20 μM. When dosed orally at 30 mg/kg twice a day (b.i.d.) in the chronic ovariectomy (OVX)‐induced rat model of osteopenia, compound 1 also prevented bone loss. At doses ranging from 3 to 30 mg/kg b.i.d., compound 1 partially prevented the OVX‐induced increase in urinary deoxypyridinoline. In addition, the compound prevented the OVX‐induced reduction in cancellous bone volume (BV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), as assessed by quantitative microcomputerized tomography (μCT) and static histomorphometry. Furthermore, both the 10‐mg/kg and 30‐mg/kg doses of compound prevented the OVX‐induced increase in bone turnover, as measured by percent osteoid perimeter (%O.Pm). Together, these data indicate that the αVβ3 antagonist compound 1 inhibits OVX‐induced bone loss. Mechanistically, compound 1 prevents bone loss in vivo by inhibiting osteoclast‐mediated bone resorption, ultimately preventing cancellous bone turnover.


Journal of Medicinal Chemistry | 2017

Discovery of a First-in-Class Receptor Interacting Protein 1 (RIP1) Kinase Specific Clinical Candidate (GSK2982772) for the Treatment of Inflammatory Diseases

Philip A. Harris; Scott B. Berger; Jae U. Jeong; Rakesh Nagilla; Deepak Bandyopadhyay; Nino Campobasso; Carol Capriotti; Julie A. Cox; Lauren Dare; Xiaoyang Dong; Patrick M. Eidam; Joshua N. Finger; Sandra J. Hoffman; James Kang; Viera Kasparcova; Bryan W. King; Ruth Lehr; Yunfeng Lan; Lara Kathryn Leister; John D. Lich; Thomas T. MacDonald; Nathan A. Miller; Michael T. Ouellette; Christina S. Pao; Attiq Rahman; Michael Reilly; Alan R. Rendina; Elizabeth J. Rivera; Michelle Schaeffer; Clark A. Sehon

RIP1 regulates necroptosis and inflammation and may play an important role in contributing to a variety of human pathologies, including immune-mediated inflammatory diseases. Small-molecule inhibitors of RIP1 kinase that are suitable for advancement into the clinic have yet to be described. Herein, we report our lead optimization of a benzoxazepinone hit from a DNA-encoded library and the discovery and profile of clinical candidate GSK2982772 (compound 5), currently in phase 2a clinical studies for psoriasis, rheumatoid arthritis, and ulcerative colitis. Compound 5 potently binds to RIP1 with exquisite kinase specificity and has excellent activity in blocking many TNF-dependent cellular responses. Highlighting its potential as a novel anti-inflammatory agent, the inhibitor was also able to reduce spontaneous production of cytokines from human ulcerative colitis explants. The highly favorable physicochemical and ADMET properties of 5, combined with high potency, led to a predicted low oral dose in humans.


Bioorganic & Medicinal Chemistry Letters | 1999

Orally bioavailable nonpeptide vitronectin receptor antagonists with efficacy in an osteoporosis model

William H. Miller; William E. Bondinell; Russell D. Cousins; Karl F. Erhard; Dalia R. Jakas; Richard M. Keenan; Thomas W. Ku; Kenneth A. Newlander; Stephen T. Ross; R. Curtis Haltiwanger; Jeremy N. Bradbeer; Fred H. Drake; Maxine Gowen; Sandra J. Hoffman; Shing-Mei Hwang; Ian E. James; Michael W. Lark; Beata Lechowska; David J. Rieman; George B. Stroup; Janice A. Vasko-Moser; Denise Zembryki; Leonard M. Azzarano; Paula C. Adams; Kevin L. Salyers; Brian R. Smith; Keith W. Ward; Kyung Johanson; William F. Huffaman

A new series of potent nonpeptide vitronectin receptor antagonists, based on a novel carbocyclic Gly-Asp mimetic, has been discovered. A representative of this series, SB 265123 (4), has 100% oral bioavailability in rats, and is orally active in vivo in the ovariectomized rat model of osteoporosis.


Cardiovascular Research | 2008

Leucocyte cathepsin K affects atherosclerotic lesion composition and bone mineral density in low-density lipoprotein receptor deficient mice

Jian Guo; Ilze Bot; Ramon de Nooijer; Sandra J. Hoffman; George B. Stroup; Erik A.L. Biessen; G. Martin Benson; Pieter H.E. Groot; Miranda Van Eck; Theo J.C. van Berkel

AIMS Cathepsin K (CatK), an established drug target for osteoporosis, has been reported to be upregulated in atherosclerotic lesions. Due to its proteolytic activity, CatK may influence the atherosclerotic lesion composition and stability. In this study, we investigated the potential role of leucocyte CatK in atherosclerotic plaque remodelling. METHODS AND RESULTS To assess the biological role of leucocyte CatK, we used the technique of bone marrow transplantation to selectively disrupt CatK in the haematopoietic system. Total bone marrow progenitor cells from CatK(+/+), CatK(+/-), and CatK(-/-) mice were transplanted into X-ray irradiated low-density lipoprotein receptor knockout (LDLr(-/-)) mice. The selective silencing of leucocyte CatK resulted in phenotypic changes in bone formation with an increased total bone mineral density in the CatK(-/-) chimeras and an effect of gene dosage. The absence of leucocyte CatK resulted in dramatically decreased collagen and increased macrophage content of the atherosclerotic lesions while lesion size was not affected. The atherosclerotic lesions also demonstrated less elastic lamina fragmentation and a significant increase in the apoptotic and necrotic area in plaques of mice transplanted with CatK(-/-) bone marrow. CONCLUSION Leucocyte CatK is an important determinant of atherosclerotic plaque composition, vulnerability, and bone remodelling, rendering CatK an attractive target for pharmaceutical modulation in atherosclerosis and osteoporosis.


Cytokine | 1994

Interleukin 6 production in fetal rat long bone cultures is correlated with PGE2 release and does not correlate with the extent of bone resorption

Donald R. Bertolini; Bartholomew J. Votta; Sandra J. Hoffman; Gideon Strassmann

Reports from several laboratories have suggested that interleukin 6 (IL-6) may play a role in the process of bone resorption. We have extended these studies by examining the role of IL-6 in fetal rat long bone (FRLB) resorption stimulated by a variety of agents, including parathyroid hormone (PTH); 1,25 dihydroxyvitamin D3 (1,25(OH)2D3); interleukin 1 (IL-1); tumour necrosis factor alpha (TNF-alpha) and lipopolysaccharide (LPS). This model of bone resorption does not require the generation of osteoclasts in order to elicit a resorptive response and allowed us to assess whether IL-6 can directly affect osteoclastic bone resorption. We confirmed previous studies which showed that exogenous recombinant murine or human IL-6 does not stimulate bone resorption and demonstrated that IL-6, when added prior to the addition of parathyroid hormone, caused a significant but somewhat variable inhibition at 120 hours. Exogenous PGE2 stimulated both IL-6 production and resorption in FRLB cultures in a concentration-dependent manner. Endogenous production of IL-6 in fetal rat long bone (FRLB) cultures was stimulus dependent and generally correlated with prostaglandin E2 (PGE2) levels in the same cultures. However, endogenous IL-6 production did not correlate with the extent of bone resorption, except when IL-1 and PGE2 were used as stimuli. Addition of indomethacin and diclofenac to IL-1 stimulated cultures demonstrated that both the IL-6 production and bone resorption were largely PGE-2 dependent. Neutralizing anti-IL-6 antibodies inhibited IL-6 activity in FRLB cultures but did not affect bone resorption, even in the IL-1 stimulated cultures.(ABSTRACT TRUNCATED AT 250 WORDS)

Collaboration


Dive into the Sandra J. Hoffman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxine Gowen

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge