Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Jelacic is active.

Publication


Featured researches published by Sandra Jelacic.


Journal of Biomaterials Science-polymer Edition | 2004

Anti-inflammatory drug delivery from hyaluronic acid hydrogels

Sei Kwang Hahn; Sandra Jelacic; Ronald V. Maier; Patrick S. Stayton; Allan S. Hoffman

Two different types of hyaluronic acid (HA) hydrogels were synthesized by crosslinking HA with divinyl sulfone (DVS) and poly(ethylene glycol)-divinyl sulfone (VS-PEG-VS). Vitamin E succinate (VES), an anti-inflammatory drug, and bovine serum albumin (BSA), a model of anti-inflammatory protein drugs, were loaded into the gels and their release kinetics were measured in vitro. VES and BSA released with a burst from both HA hydrogels during the first few hours, and release continued gradually for several days. The rate of release from HA-VS-PEG-VS-HA hydrogels was faster than that from HA-DVS-HA hydrogels, presumably due to the lower crosslink density in the former. The anti-inflammatory action of released VES was tested by incubating peripheral blood mononuclear cells (PBMC) on HA hydrogels with and without VES in the gel. The number of cells adhering on HA hydrogels was very low compared to that on tissue culture polystyrene (TCPS), which might be one of the important advantages of using HA hydrogels for implant coatings or tissue engineering applications. ELISA test results showed that the tumor necrosis factor-α (TNF-α) concentration was very low in the supernatant of the wells containing the HA hydrogel with VES in contact with the activated macrophages compared to that without VES. This is probably the effect of the released VES reducing the production of anti-inflammatory cytokine, TNF-α. HA hydrogels containing anti-inflammatory drugs may have potential for use in tissue engineering and also as biocompatible coatings of implants.


Journal of Immunology | 2002

Hypertonic Preconditioning Inhibits Macrophage Responsiveness to Endotoxin

Joseph Cuschieri; David M. Gourlay; Iris Garcia; Sandra Jelacic; Ronald V. Maier

Hypertonic saline has been shown to modulate cell shape and the response of components of the innate immune response. However, the effect of hypertonic saline on the macrophage remains unknown. We hypothesized that hypertonic preconditioning would impair subsequent inflammatory mediator signaling through a reduction in stress fiber polymerization and mitogen-activated protein kinase activity after LPS stimulation. Rabbit alveolar macrophages were stimulated with 100 ng/ml of LPS. Selected cells were preconditioned with 40–100 mM of NaCl, mannitol, or urea for 4 h and returned to isotonic medium before LPS stimulation. Cellular protein was harvested and subjected to Western blot analysis for the dually phosphorylated active forms of p38 and extracellular signal-related kinase (ERK) 1/2. TNF production was determined by an L929 bioassay, and stress fiber polymerization was evaluated by confocal microscopy. Preconditioning of macrophages with NaCl or mannitol resulted in dose-dependent reduction in ERK 1/2 phosphorylation with no effect on p38 phosphorylation. Urea preconditioning had no effect on either mitogen-activated protein kinase. A dose-dependent attenuation of TNF production was seen with NaCl and mannitol preconditioning (p < 0.05), but not with urea. NaCl and mannitol preconditioning resulted in failure of LPS-induced stress fiber polymerization, whereas urea did not. Extracellular hypertonic conditions (i.e., NaCl and mannitol) have an immunomodulatory effect on macrophages, demonstrated through failure of optimal stress fiber polymerization, ERK 1/2 activity, and TNF production. Intracellular hypertonic conditions (i.e., urea) had no significant effect. Hypertonic saline or mannitol resuscitation, therefore, may help protect against multiple-organ dysfunction syndrome as a result of this reduced proinflammatory responsiveness.


Journal of Trauma-injury Infection and Critical Care | 2002

Slow channel calcium inhibition blocks proinflammatory gene signaling and reduces macrophage responsiveness

Joseph Cuschieri; David M. Gourlay; Iris Garcia; Sandra Jelacic; Ronald V. Maier

BACKGROUND This study investigates the possible intracellular mechanisms responsible for calcium antagonist protection in tissue-fixed macrophages, a central modulator of the proinflammatory phenotype. METHODS Rabbit alveolar macrophages were exposed to lipopolysaccharide in the presence of different specific calcium antagonists. Cellular and nuclear protein were extracted and analyzed by Western blot for the phosphorylated forms of PYK2, ERK 1/2, and p38, and nuclear translocation of NF-kappaB and AP-1. Tumor necrosis factor-alpha (TNF-alpha) expression was measured by an L929 bioassay on cellular supernatants. Statistical analysis was performed by unpaired Students t tests. RESULTS Cells pretreated with 100 to 500 micromol/L of diltiazem or 50 to 100 micromol/L of verapamil, both slow channel calcium blockers, led to dose-dependent reductions in lipopolysaccharide-induced PYK2 and ERK 1/2 phosphorylation, and nuclear translocation of AP-1 when compared with controls (p < 0.05). Neither inhibitor had any significant effect on p38 or NF-kappaB translocation. EGTA an extracellular calcium chelator, had no significant effect on any intracellular process studied. A dose-dependent reduction in TNF-alpha production was demonstrated with diltiazem and verapamil (p < 0.05), with no effect induced by EGTA. CONCLUSION Slow channel calcium influx is essential for optimal intracellular signaling through PYK2 and ERK 1/2. This reduced intracellular signaling correlated with reduced AP-1 translocation and TNF-alpha production. Extracellular calcium chelation had no significant effect on intracellular signaling or TNF-alpha production. This study further elucidates the protective mechanism of action of calcium channel blockade by diltiazem and verapamil by reducing intracellular calcium release and down-regulating the excessive proinflammatory phenotype.


Shock | 2005

Hypertonic saline modulates innate immunity in a model of systemic inflammation.

Kristan Staudenmayer; Ronald V. Maier; Sandra Jelacic; Eileen M. Bulger

We sought to determine if hypertonic saline (HTS) impacted alveolar macrophage (AM) activation and intracellular inflammatory gene signaling in a model of systemic inflammation. Rats received an intravenous administration of 4 mL/kg of 7.5% HTS or L-lactate lactated Ringers (L-LR). They were simultaneously treated with an intraperitoneal injection of zymosan, which induces noninfectious systemic inflammation. AM were harvested by bronchoalveolar lavage 24 h after treatment. AM activation was analyzed by measurement of baseline and lipopolysaccharide (LPS)-induced TNF-α production. Intracellular signaling was analyzed for activation of the mitogen-activated protein kinases (MAPKs): ERK1/2, JNK, and p38. AM from HTS-treated rats produced less TNF-α than from L-LR-treated rats (927 ± 335 pg/mL [SEM] vs. 3628 ± 783 pg/mL [SEM], P = 0.001) and were also less responsive to LPS (4444 ± 86 pg/mL [SEM] vs. 6666 ± 91 pg/mL [SEM], P = 0.058). However, there was no difference in MAPK activation. In vivo HTS prevents excessive AM activation during systemic inflammation. This suppression is mediated through alternate pathways and does not induce the classic MAPK signaling cascade.


Shock | 2007

The priming effect of C5a on monocytes is predominantly mediated by the p38 MAPK pathway.

Val rie Schaeffer; Joseph Cuschieri; Iris Garcia; Megan Knoll; Jens Billgren; Sandra Jelacic; Eileen M. Bulger; Ronald V. Maier

The dysregulation of the inflammatory response after trauma leads to significant morbidity and mortality. Monocytes and macrophages play a central role in the orchestration of the inflammatory response after injury. Serum interleukin-6 (IL-6) concentration correlates with poor outcomes after injury. Tumor necrosis factor-&agr; (TNF-&agr;) is a proinflammatory cytokine that plays a crucial role in the pathogenesis of multiple organ dysfunction syndrome. Furthermore, in the presence of C5a, monocytes and macrophages have potentiated responses, but the mechanisms underlying this response remain largely unknown. Peripheral blood mononuclear cells (PBMCs) were isolated from healthy volunteers and pretreated with C5a (100 ng/mL) for 1 h before adding lipopolysaccharide (LPS) (10 ng/mL) for up to 20 h. Inhibitors for the mitogen-activated protein kinases (MAPKs) were added 1 h before adding C5a. C5a primes monocytes for LPS-induced IL-6 and TNF-&agr; production. Treatment of PBMCs with C5a leads to a rapid activation of the 3 MAPK pathways. SP600125 (inhibitor of c-Jun NH2-terminal kinase MAPK) and PD98059 (inhibitor of extracellular signal-regulated kinase MAPK) did not affect the C5a priming of the LPS-induced IL-6 and TNF-&agr; production, whereas SB203580, a specific inhibitor of p38 MAPK, did suppress the C5a priming effect. These results demonstrate that C5a primes adherent PBMCs and modulates LPS-induced IL-6 and TNF-&agr; production. Results from extracellular signal-regulated kinase and c-Jun NH2-terminal kinase MAPK blockade suggest that these signaling pathways have minimal or no role in reprogramming LPS-mediated IL-6 and TNF-&agr; production. On the contrary, in PBMCs, C5a activates the p38 cascade, and this pathway plays a major role in the C5a enhancement of LPS-induced IL-6 and TNF-&agr; production.


Journal of Biomaterials Science-polymer Edition | 2005

Monocyte activation on polyelectrolyte multilayers

Jason J. Hwang; Sandra Jelacic; Newton T. Samuel; Ronald V. Maier; Charles T. Campbell; David G. Castner; Allan S. Hoffman; Patrick S. Stayton

The adherence and activation of primary human monocytes was investigated on a polyelectrolyte multilayer film containing hyaluronic acid (HA) and poly-L-lysine (PLL). The sequential layer-by-layer deposition of the multilayer film was characterized by surface plasmon resonance. Eight alternating bilayers displayed an effective thickness of 16.15 nm with a total polymer coverage of 2.10 μg/cm2. For cell studies, HA-PLL multilayers were constructed on tissue culture polystyrene (TCPS) substrates and characterized by time of flight second ion mass spectrometry (ToF-SIMS) analysis. Principal component analysis of the ToF-SIMS spectra resolved no significant difference in surface chemistry between PLL-terminated and HA-terminated multilayer surfaces. Monocyte adhesion on PLL- and HA-terminated surfaces was measured by the lactate dehydrogenase assay and showed a significant decrease in cell adhesion after 24 h incubation. Cell viability measured by Live/Dead fluorescent staining showed significant cell death in the adherent cell population over these 24 h. Tumor necrosis factor-α (TNF-α) production, a measure of monocyte activation, was quantified by ELISA and normalized to the number of adherent monocytes. The activation of monocytes on PLL-terminated and HA-terminated surfaces was nearly identical, and both surfaces had TNF-α levels that were 8-fold higher than TCPS. These results demonstrate that sufficient PLL had diffused into the surface layer to direct monocyte adherence and to induce cytokine activation and cell death on the HA-terminated multilayer films. The diffusion of the second multilayer component to the coating surface should, thus, be taken into account in the design of polyelectrolyte-based biomaterial coating strategies.


Shock | 2005

Calcium/calmodulin-dependent kinase II is required for platelet-activating factor priming.

Joseph Cuschieri; Eileen M. Bulger; Iris Garcia; Sandra Jelacic; Ronald V. Maier

Platelet-activating factor (PAF) primes the macrophage proinflammatory response to inflammatory stimuli, such as lipopolysaccharide (LPS). The cellular events responsible for this priming or reprogramming remain unresolved, but may occur through an increase in cytosolic calcium, inducing calcium/calmodulin-dependent kinase (CaMK) activation. To study this, differentiated THP-1 cells were used to study the effect of CaMK II and IV inhibition on PAF-induced reprogramming of TLR4-mediated events. LPS induced p38, ERK 1/2, and JNK/SAPK phosphorylation, NF-κB and AP-1 activation, and TNF-α and IL-10 production. PAF pretreatment selectively increased LPS-induced ERK 1/2, JNK/SAPK, NF-κB and AP-1 activation, and TNF-α production. Inhibition of CaMK II prevented PAF-induced priming of these events. Inhibition of CaMK IV prevented LPS-induced ERK 1/2, JNK/SAPK, NF-κB and AP-1 activation, and TNF-α production, but increased IL-10 production with or without PAF pretreatment. Neither CaMK II nor IV inhibition had any affect on p38 activity. These data suggest that the function of CaMK II is essential for PAF-induced macrophage priming. This priming event is mediated in part by modulation of ERK 1/2, JNK/SAPK, NF-κB, and AP-1 activation. CaMK IV, on the other hand, is not specific for priming by PAF and appears to have a direct link in TLR4-mediated events.


Shock | 2002

The actin cytoskeleton: an essential component for enhanced TNFalpha production by adherent monocytes.

Matthew R. Rosengart; Saman Arbabi; G. Bauer; Iris Garcia; Sandra Jelacic; Ronald V. Maier

Monocyte adherence induces the formation of focal adhesions, the interaction sites of intracellular signaling molecules and cytoskeletal proteins such as actin. We previously demonstrated that adherence potentiates human monocyte LPS-induced TNF&agr; production. Hence, we hypothesized that the actin cytoskeleton is integral to adherence-induced priming for enhanced LPS-induced TNF&agr; production. In contrast to nonadherent cells, LPS induced significant transcription of TNF&agr; mRNA and production of TNF&agr; in adherent monocytes. Disrupting the actin cytoskeleton with cytochalasin D (CD) in adherent monocytes inhibited LPS-induced TNF&agr; production by 55%, thereby abrogating adherence-induced priming. Moreover, CD pretreatment abrogated adherence-induced activation of Pyk2, a major focal adhesion kinase, and ERK 1/2, a component of the mitogen-activated protein kinase (MAPK) signaling pathway, and it completely inhibited LPS-induced ERK 1/2 activation. However, CD treatment of nonadherent monocytes failed to inhibit cytokine production. In conclusion, the actin cytoskeleton is integral in the reprogramming of the monocyte for enhanced cytokine production and in maintaining this “primed” state.


Shock | 2003

Modulation of endotoxin-induced endothelial function by calcium/calmodulin-dependent protein kinase

Joseph Cuschieri; David M. Gourlay; Iris Garcia; Sandra Jelacic; R. Maier

Endothelial cells facilitate sepsis-induced neutrophil adherence through the production of adhesion molecules and proinflammatory cytokines. The production of these factors requires coordinated intracellular inflammatory signaling. Recently, patients prone to sepsis-induced complications have been shown to have derangements in intracellular calcium and potentially calcium/calmodulin-dependent protein kinase (CaMK) activity, but the impact of these impairments is unknown. Human umbilical vein endothelial vein endothelial cells (HUVECs) were exposed to lipopolysaccharide (LPS) for various periods of time. Select HUVECs were pretreated with an inhibitor of CaMK II, KN62. Total cellular and nuclear proteins were extracted and analyzed for various components of the Toll-mediated signal cascade. Neutrophil adhesion was assayed fluorometrically using calcein-labeled neutrophils on treated HUVECs. LPS stimulation led to mitogen-activated protein kinase activation and translocation of activator protein-1 (AP-1) and nuclear factor (NF)-&kgr;B. CaMK blockade inhibited LPS induced ERK 1/2 and JNK but enhanced p38 activity. This selective MAPK inhibition was associated with a reduction in AP-1 activity, with no affect on NF-&kgr;B activity. Associated with this altered cell signaling was increased ICAM-1 production and enhanced neutrophil adhesion. Altered CaMK activity resulted in dysregulated mitogen-activated protein kinase signaling, demonstrated by reduced ERK 1/2 and JNK activity but enhanced p38 activity. This altered signaling is associated with reduced AP-1 activation and unaffected NF-&kgr;B activation. Neutrophil adhesion, however, is enhanced presumably through increased ICAM-1 production. Therefore, CaMK inhibition of endothelial cells, characteristic of sustained increases in intracellular calcium, appears to result in a dysregulated proadhesive phenotype.


Shock | 2003

Endotoxin-induced endothelial cell proinflammatory phenotypic differentiation requires stress fiber polymerization.

Joseph Cuschieri; David M. Gourlay; Iris Garcia; Sandra Jelacic; Ronald V. Maier

Endotoxin-induced intercellular adhesion molecule-1 (ICAM-1) and interleukin 8 (IL-8) production in endothelial cells, which is mediated by Toll-receptor signaling, is essential for optimal neutrophil recruitment and migration during sepsis. Endotoxin also causes stress fiber polymerization that has recently been shown to affect intracellular signaling. However, the role of this polymerization process on endothelial-induced neutrophil adhesion and migration is unknown. Human umbilical vein endothelial cells (HUVEC) were stimulated with lipopolysaccharide (LPS). Selected cells were pretreated with cytochalasin D (CD) or lactrunculin A (LA), agents that disrupt actin polymerization. Cellular protein was extracted and analyzed by Western blot for the phosphorylated form of IL-1-associated kinase (IRAK) and production of ICAM-1. Extracted nuclear protein was analyzed by Western blot and electrophoretic mobility shift assay (EMSA) for nuclear translocation and activity of NF-&kgr;B. IL-8 production was determined by enzyme-linked immunoabsorbant assay (ELISA). Neutrophil adhesion was assayed fluorometrically using calcein-AM-labeled neutrophils on treated endothelial cells. LPS treatment led to phosphorylation of IRAK, and subsequent NF-&kgr;B translocation and activation. This cellular signaling was followed by ICAM-1 expression and IL-8 production. Pretreatment of cells with CD or LA led to a significant inhibition of IRAK phosphorylation, and NF-&kgr;B nuclear translocation and activation. Actin depolymerization also significantly inhibited LPS-induced ICAM-1 and IL-8 production. HUVEC pretreated with CD or LA demonstrated significant inhibition of LPS-induced neutrophil adhesion. Endotoxin-induced actin polymerization is essential for optimal intracellular signaling through IRAK and NF-&kgr;B. Failure of these signaling events is associated with a marked reduction in adhesion molecule production, IL-8 production, and neutrophil adhesion. These findings support the necessity of stress fiber polymerization for optimal recruitment of neutrophils during sepsis.

Collaboration


Dive into the Sandra Jelacic's collaboration.

Top Co-Authors

Avatar

Iris Garcia

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Gourlay

Children's Hospital of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

R. Maier

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saman Arbabi

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge