Sandra Lacas-Gervais
University of Nice Sophia Antipolis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Lacas-Gervais.
Cell | 2013
Bruno Mesmin; Joëlle Bigay; Joachim Moser von Filseck; Sandra Lacas-Gervais; Guillaume Drin; Bruno Antonny
Several proteins at endoplasmic reticulum (ER)-Golgi membrane contact sites contain a PH domain that interacts with the Golgi phosphoinositide PI(4)P, a FFAT motif that interacts with the ER protein VAP-A, and a lipid transfer domain. This architecture suggests the ability to both tether organelles and transport lipids between them. We show that in oxysterol binding protein (OSBP) these two activities are coupled by a four-step cycle. Membrane tethering by the PH domain and the FFAT motif enables sterol transfer by the lipid transfer domain (ORD), followed by back transfer of PI(4)P by the ORD. Finally, PI(4)P is hydrolyzed in cis by the ER protein Sac1. The energy provided by PI(4)P hydrolysis drives sterol transfer and allows negative feedback when PI(4)P becomes limiting. Other lipid transfer proteins are tethered by the same mechanism. Thus, OSBP-mediated back transfer of PI(4)P might coordinate the transfer of other lipid species at the ER-Golgi interface.
Brain | 2014
Sylvie Bannwarth; Samira Ait-El-Mkadem; Annabelle Chaussenot; Emmanuelle C. Genin; Sandra Lacas-Gervais; Konstantina Fragaki; Laetitia Berg-Alonso; Yusuke Kageyama; Valérie Serre; David Moore; Annie Verschueren; Cécile Rouzier; Isabelle Le Ber; Gaëlle Augé; Charlotte Cochaud; Françoise Lespinasse; Karine N’Guyen; Anne de Septenville; Alexis Brice; Patrick Yu-Wai-Man; Hiromi Sesaki; Jean Pouget; Véronique Paquis-Flucklinger
Mitochondrial DNA instability disorders are responsible for a large clinical spectrum, among which amyotrophic lateral sclerosis-like symptoms and frontotemporal dementia are extremely rare. We report a large family with a late-onset phenotype including motor neuron disease, cognitive decline resembling frontotemporal dementia, cerebellar ataxia and myopathy. In all patients, muscle biopsy showed ragged-red and cytochrome c oxidase-negative fibres with combined respiratory chain deficiency and abnormal assembly of complex V. The multiple mitochondrial DNA deletions found in skeletal muscle revealed a mitochondrial DNA instability disorder. Patient fibroblasts present with respiratory chain deficiency, mitochondrial ultrastructural alterations and fragmentation of the mitochondrial network. Interestingly, expression of matrix-targeted photoactivatable GFP showed that mitochondrial fusion was not inhibited in patient fibroblasts. Using whole-exome sequencing we identified a missense mutation (c.176C>T; p.Ser59Leu) in the CHCHD10 gene that encodes a coiled-coil helix coiled-coil helix protein, whose function is unknown. We show that CHCHD10 is a mitochondrial protein located in the intermembrane space and enriched at cristae junctions. Overexpression of a CHCHD10 mutant allele in HeLa cells led to fragmentation of the mitochondrial network and ultrastructural major abnormalities including loss, disorganization and dilatation of cristae. The observation of a frontotemporal dementia-amyotrophic lateral sclerosis phenotype in a mitochondrial disease led us to analyse CHCHD10 in a cohort of 21 families with pathologically proven frontotemporal dementia-amyotrophic lateral sclerosis. We identified the same missense p.Ser59Leu mutation in one of these families. This work opens a novel field to explore the pathogenesis of the frontotemporal dementia-amyotrophic lateral sclerosis clinical spectrum by showing that mitochondrial disease may be at the origin of some of these phenotypes.
Developmental Cell | 2013
Keith Al-Hasani; Anja Pfeifer; Monica Courtney; Nouha Ben-Othman; Elisabet Gjernes; Andhira Vieira; Noémie Druelle; Fabio Avolio; Philippe Ravassard; Gunter Leuckx; Sandra Lacas-Gervais; Damien Ambrosetti; Emmanuel Benizri; Jacob Hecksher-Sørensen; Pierre Gounon; Jorge Ferrer; Gérard Gradwohl; Harry Heimberg; Ahmed Mansouri; Patrick Collombat
It was recently demonstrated that embryonic glucagon-producing cells in the pancreas can regenerate and convert into insulin-producing β-like cells through the constitutive/ectopic expression of the Pax4 gene. However, whether α cells in adult mice display the same plasticity is unknown. Similarly, the mechanisms underlying such reprogramming remain unclear. We now demonstrate that the misexpression of Pax4 in glucagon(+) cells age-independently induces their conversion into β-like cells and their glucagon shortage-mediated replacement, resulting in islet hypertrophy and in an unexpected islet neogenesis. Combining several lineage-tracing approaches, we show that, upon Pax4-mediated α-to-β-like cell conversion, pancreatic duct-lining precursor cells are continuously mobilized, re-express the developmental gene Ngn3, and successively adopt a glucagon(+) and a β-like cell identity through a mechanism involving the reawakening of the epithelial-to-mesenchymal transition. Importantly, these processes can repeatedly regenerate the whole β cell mass and thereby reverse several rounds of toxin-induced diabetes, providing perspectives to design therapeutic regenerative strategies.
PLOS Genetics | 2013
Monica Courtney; Elisabet Gjernes; Noémie Druelle; Christophe Ravaud; Andhira Vieira; Nouha Ben-Othman; Anja Pfeifer; Fabio Avolio; Gunter Leuckx; Sandra Lacas-Gervais; Fanny Burel-Vandenbos; Damien Ambrosetti; Jacob Hecksher-Sørensen; Philippe Ravassard; Harry Heimberg; Ahmed Mansouri; Patrick Collombat
Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing β-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon+ cells thereby generated being subsequently converted into β-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated β-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional β-cell mass and thereby reverse diabetes following toxin-induced β-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.
Science | 2014
Mathieu Pinot; Stefano Vanni; Sophie Pagnotta; Sandra Lacas-Gervais; Laurie-Anne Payet; Thierry Ferreira; Romain Gautier; Bruno Goud; Bruno Antonny; Hélène Barelli
Bending the benefits of polyunsaturates We have often heard that it is beneficial to eat polyunsaturated fatty acids. We also know that some organelles such as synaptic vesicles are extremely rich in polyunsaturated lipids. However, what polyunsaturated lipids do in our body is unclear. Using cell biology, biochemical reconstitutions, and molecular dynamics, Pinot et al. show that polyunsaturated phospholipids can change the response of membranes to proteins involved in membrane curvature sensing, membrane shaping, and membrane fission. Polyunsaturated phospholipids make the plasma membrane more amenable to deformation; facilitate endocytosis; and, in reconstitution experiments, increased membrane fission by the dynamin-endophilin complex. Science, this issue p. 693 Certain membrane lipids adapt their conformation to membrane curvature, facilitating membrane deformation and fission. Phospholipids (PLs) with polyunsaturated acyl chains are extremely abundant in a few specialized cellular organelles such as synaptic vesicles and photoreceptor discs, but their effect on membrane properties is poorly understood. Here, we found that polyunsaturated PLs increased the ability of dynamin and endophilin to deform and vesiculate synthetic membranes. When cells incorporated polyunsaturated fatty acids into PLs, the plasma membrane became more amenable to deformation by a pulling force and the rate of endocytosis was accelerated, in particular, under conditions in which cholesterol was limiting. Molecular dynamics simulations and biochemical measurements indicated that polyunsaturated PLs adapted their conformation to membrane curvature. Thus, by reducing the energetic cost of membrane bending and fission, polyunsaturated PLs may help to support rapid endocytosis.
Frontiers in Oncology | 2012
Joffrey Pelletier; Grégory Bellot; Pierre Gounon; Sandra Lacas-Gervais; Jacques Pouysségur; Nathalie M. Mazure
The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these “hypoxia-preconditioned” cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO2 acts as an “alarm” that prepares the cells to face subsequent nutrient depletion and to survive.
Brain | 2015
Sylvie Bannwarth; Samira Ait-El-Mkadem; Annabelle Chaussenot; Emmanuelle C. Genin; Sandra Lacas-Gervais; Konstantina Fragaki; Laetitia Berg-Alonso; Yusuke Kageyama; Valérie Serre; David Moore; Annie Verschueren; Cécile Rouzier; Isabelle Le Ber; Gaëlle Augé; Charlotte Cochaud; Françoise Lespinasse; Karine N’Guyen; Anne de Septenville; Alexis Brice; Patrick Yu-Wai-Man; Hiromi Sesaki; Jean Pouget; Véronique Paquis-Flucklinger
Sir, We read with interest the paper recently published in Brain (Bannwarth et al. , 2014) reporting a mutation in CHCHD10 (c.176C > T, p.Ser59Leu) in familial amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Interestingly, the mutated patients also showed signs of muscle mitochondrial pathology consisting of cytochrome c oxidase (COX)-negative fibres, ultrastructural mitochondrial abnormalities, impaired respiratory chain activity, and altered mitochondrial DNA (mtDNA) maintenance (multiple deletions). Additional CHCHD10 mutations were reported by Muller et al. (2014) who identified the c.44C > A variant (p.Arg15Leu) in two German familial ALS cases and the variant c.197C > A (p.Gly66Val) in a Finnish patient with familial motor neuron disease with predominant lower motor neuron involvement. Chaussenot et al. (2014) screened CHCHD10 in a cohort of 80 French patients with sporadic FTD-ALS, disclosing the p.Pro34Ser mutation in two independent subjects. Mutated patients also featured sensorineural hypoacusia typically associated with mitochondrial disease, but mitochondrial dysfunction was not formally documented. Finally Johnson et al. (2014) investigated 85 independent North American cases with familial ALS, reporting the p.Arg15Leu mutation in three of them. Here we report clinical, biochemical, and molecular findings of an Italian patient affected by sporadic early-onset ALS and muscle mitochondrial pathology associated with a novel CHCHD10 mutation. Moreover we investigated a cohort of Italian sporadic ALS patients, supporting the modest, but not negligible causative role of CHCHD10 variations. We previously found severe histochemical COX deficiency in 7 of 50 muscle biopsies from patients with sporadic ALS (Crugnola et al. , 2010). Sequence analysis of ALS-related genes was negative in all patients but two (SOD1: p.Gln22Arg and TDP43: p.Ala382Thr). We sequenced CHCHD10 coding regions in the remaining five patients, disclosing the novel heterozygous transition c.239C > T in exon 2, resulting in the amino acid change p.Pro80Leu, in one of them (Fig. 1 …
Embo Molecular Medicine | 2016
Emmanuelle C. Genin; Morgane Plutino; Sylvie Bannwarth; Elodie Villa; Eugenia Cisneros-Barroso; Madhuparna Roy; Bernardo Ortega-Vila; Konstantina Fragaki; Françoise Lespinasse; Estefanía Piñero-Martos; Gaëlle Augé; David Moore; Florence Burté; Sandra Lacas-Gervais; Yusuke Kageyama; Kie Itoh; Patrick Yu-Wai-Man; Hiromi Sesaki; Jean-Ehrland Ricci; Cristofol Vives-Bauza; Véronique Paquis-Flucklinger
CHCHD10‐related diseases include mitochondrial DNA instability disorder, frontotemporal dementia‐amyotrophic lateral sclerosis (FTD‐ALS) clinical spectrum, late‐onset spinal motor neuropathy (SMAJ), and Charcot–Marie–Tooth disease type 2 (CMT2). Here, we show that CHCHD10 resides with mitofilin, CHCHD3 and CHCHD6 within the “mitochondrial contact site and cristae organizing system” (MICOS) complex. CHCHD10 mutations lead to MICOS complex disassembly and loss of mitochondrial cristae with a decrease in nucleoid number and nucleoid disorganization. Repair of the mitochondrial genome after oxidative stress is impaired in CHCHD10 mutant fibroblasts and this likely explains the accumulation of deleted mtDNA molecules in patient muscle. CHCHD10 mutant fibroblasts are not defective in the delivery of mitochondria to lysosomes suggesting that impaired mitophagy does not contribute to mtDNA instability. Interestingly, the expression of CHCHD10 mutant alleles inhibits apoptosis by preventing cytochrome c release.
EMBO Reports | 2016
Mabrouka Doghman-Bouguerra; Veronica Granatiero; Silviu Sbiera; Iuliu Sbiera; Sandra Lacas-Gervais; Frédéric Brau; Martin Fassnacht; Rosario Rizzuto; Enzo Lalli
Several stimuli induce programmed cell death by increasing Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria. Perturbation of this process has a special relevance in pathologies as cancer and neurodegenerative disorders. Mitochondrial Ca2+ uptake mainly takes place in correspondence of mitochondria‐associated ER membranes (MAM), specialized contact sites between the two organelles. Here, we show the important role of FATE1, a cancer‐testis antigen, in the regulation of ER–mitochondria distance and Ca2+ uptake by mitochondria. FATE1 is localized at the interface between ER and mitochondria, fractionating into MAM. FATE1 expression in adrenocortical carcinoma (ACC) cells under the control of the transcription factor SF‐1 decreases ER–mitochondria contact and mitochondrial Ca2+ uptake, while its knockdown has an opposite effect. FATE1 also decreases sensitivity to mitochondrial Ca2+‐dependent pro‐apoptotic stimuli and to the chemotherapeutic drug mitotane. In patients with ACC, FATE1 expression in their tumor is inversely correlated with their overall survival. These results show that the ER–mitochondria uncoupling activity of FATE1 is harnessed by cancer cells to escape apoptotic death and resist the action of chemotherapeutic drugs.
Biochemical and Biophysical Research Communications | 2015
Nicolas Forcioli-Conti; Sandra Lacas-Gervais; Christian Dani; Pascal Peraldi
The primary cilium is an organelle present in most of the cells of the organism. Ciliopathies are genetic disorders of the primary cilium and can be associated with obesity. We have studied the primary cilium during adipocyte differentiation of human adipose stem cells (hASC). We show here that the size of the primary cilium follows several modifications during adipocyte differentiation. It is absent in growing cells and appears in confluent cells. Interestingly, during the first days of differentiation, the cilium undergoes a dramatic elongation that can be mimicked by dexamethasone alone. Thereafter, its size decreases. It can still be detected in cells that begin to accumulate lipids but is absent in cells that are filled with lipids. The cilium elongation does not seem to affect the localization of proteins associated with the cilium such as Kif3-A or Smoothened. However, Hedgehog signaling, an anti-adipogenic pathway dependent on the primary cilium, is inhibited after three days of differentiation, concomitantly with the cilium size increase. Together, these results shed new light on the primary cilium and could provide us with new information on adipocyte differentiation under normal and pathological conditions.