Sandra Luginbühl
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Luginbühl.
Nature Nanotechnology | 2016
Andreas Küchler; Makoto Yoshimoto; Sandra Luginbühl; Fabio Mavelli; Peter Walde
Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.
Scientific Reports | 2016
Aleksandra Janošević Ležaić; Sandra Luginbühl; Danica Bajuk-Bogdanović; Igor A. Pašti; Reinhard Kissner; Boris Rakvin; Peter Walde; Gordana Ćirić-Marjanović
We report about the first Raman spectroscopy study of a vesicle-assisted enzyme-catalyzed oligomerization reaction. The aniline dimer N-phenyl-1,4-phenylenediamine (= p-aminodiphenylamine, PADPA) was oxidized and oligomerized with Trametes versicolor laccase and dissolved O2 in the presence of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) vesicles (80–100 nm diameter) as templates. The conversion of PADPA into oligomeric products, poly(PADPA), was monitored during the reaction by in situ Raman spectroscopy. The results obtained are compared with UV/vis/NIR and EPR measurements. All three complementary methods indicate that at least some of the poly(PADPA) products, formed in the presence of AOT vesicles, resemble the conductive emeraldine salt form of polyaniline (PANI-ES). The Raman measurements also show that structural units different from those of “ordinary” PANI-ES are present too. Without vesicles PANI-ES-like products are not obtained. For the first time, the as-prepared stable poly(PADPA)-AOT vesicle suspension was used directly to coat electrodes (without product isolation) for investigating redox activities of poly(PADPA) by cyclic voltammetry (CV). CV showed that poly(PADPA) produced with vesicles is redox active not only at pH 1.1–as expected for PANI-ES–but also at pH 6.0, unlike PANI-ES and poly(PADPA) synthesized without vesicles. This extended pH range of the redox activity of poly(PADPA) is important for applications.
Langmuir | 2016
Sandra Luginbühl; Louis Bertschi; Martin Willeke; Lukas D. Schuler; Peter Walde
The oxidation of the aniline dimer, p-aminodiphenylamine (PADPA), with Trametes versicolor laccase and O2 in an aqueous solution of pH 3.5 is controlled by negatively charged AOT (sodium bis(2-ethylhexyl) sulfosuccinate) vesicles. With vesicles, a product resembling polyaniline in its emeraldine salt form (PANI-ES) is obtained, in contrast to the reaction without vesicles where no such product is formed. To understand this observation, the product distribution and structures from the reaction with and without vesicles were determined by using partially selectively deuterated PADPA as a starting material and analyzing the products with HPLC-MS. We found that in the presence of vesicles the main product is obtained in about 50% yield, which is the N-C-para-coupled PADPA dimer that has spectroscopic properties of PANI-ES, as determined by time-dependent density functional theory (TD-DFT) calculations. A secondary reaction route leads to longer PADPA oligomers that must contain a phenazine core. Without vesicles, PADPA and its products undergo partial hydrolysis, but in the presence of vesicles, hydrolysis does not occur. Because molecular dynamics (MD) simulations show that the main intermediate oxidation product is embedded within the vesicle membrane, where the water content is very low, we propose that the microenvironment of the vesicle membrane protects the oxidation products from unwanted hydrolysis.
Chemical Papers | 2017
Gordana Ćirić-Marjanović; Maja Milojević-Rakić; Aleksandra Janošević-Ležaić; Sandra Luginbühl; Peter Walde
The literature concerning the oxidative oligomerization and polymerization of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, in aqueous, organic, and mixed aqueous organic monophasic or biphasic media, is reviewed. An overview of template-free as well as template-assisted enzymatic syntheses of oligomers and polymers of arylamines is given. Special attention is paid to mechanistic aspects of these biocatalytic processes. Because of the nontoxicity of oxidoreductases and their high catalytic efficiency, as well as high selectivity of enzymatic oligomerizations/polymerizations under mild conditions—using mainly water as a solvent and often resulting in minimal byproduct formation—enzymatic oligomerizations and polymerizations of arylamines are environmentally friendly and significantly contribute to a “green” chemistry of conducting and redox-active oligomers and polymers. Current and potential future applications of enzymatic polymerization processes and enzymatically synthesized oligo/polyarylamines are discussed.
Chemical Papers | 2017
Gordana Ćirić-Marjanović; Maja Milojević-Rakić; Aleksandra Janošević-Ležaić; Sandra Luginbühl; Peter Walde
The original article was published Online First without open access. After publication in volume 71, issue 2, page 199–242 the author decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to The Author(s) 2017 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licen ses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
ACS Catalysis | 2014
Katja Junker; Sandra Luginbühl; Mischa Schüttel; Louis Bertschi; Reinhard Kissner; Lukas D. Schuler; Boris Rakvin; Peter Walde
Synthetic Metals | 2017
Sandra Luginbühl; Maja Milojević-Rakić; Katja Junker; Danica Bajuk-Bogdanović; Igor A. Pašti; Reinhard Kissner; Gordana Ćirić-Marjanović; Peter Walde
Langmuir | 2017
Fumihiko Iwasaki; Sandra Luginbühl; Keishi Suga; Peter Walde; Hiroshi Umakoshi
Analytical Chemistry | 2017
Ya Zhang; Yannick R. F. Schmid; Sandra Luginbühl; Qiang Wang; Petra S. Dittrich; Peter Walde
Helvetica Chimica Acta | 2017
Sandra Luginbühl; Fumihiko Iwasaki; Elizabeth Chirackal Varkey; Hiroshi Umakoshi; Peter Walde