Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra M. Robinson is active.

Publication


Featured researches published by Sandra M. Robinson.


Brain Behavior and Immunity | 2010

Minimal Penetration of Lipopolysaccharide Across the Murine Blood-brain Barrier

William A. Banks; Sandra M. Robinson

LPS given peripherally or into the brain induces a neuroinflammatory response. How peripheral LPS induces its effects on brain is not clear, but one mechanism is that LPS crosses the blood-brain barrier (BBB). Alternatively, LPS acts outside the BBB by stimulating afferent nerves, acting at circumventricular organs, and altering BBB permeabilities and functions. Here, we labeled LPS with radioactive iodine (I-LPS) and coinjected it with radioactively labeled albumin (I-Alb) which acted as a vascular space marker. Measurable amounts of I-LPS associated with the BBB, most reversibly bound to brain endothelia. Brain endothelia also sequestered small amounts of I-LPS and about 0.025% of an intravenously injected dose of I-LPS crossed the BBB to enter the CNS. Disruption of the BBB with repeated injections of LPS did not enhance I-LPS uptake. Based on dose-response curves in the literature of the amounts of LPS needed to stimulate brain neuroimmune events, it is unlikely that enough peripherally administered LPS enters the CNS to invoke those events except possibly at the highest doses used and for the most sensitive brain functions. I-LPS injected into the lateral ventricle of the brain entered the circulation with the reabsorption of cerebrospinal fluid (bulk flow) as previously described. In conclusion, brain uptake of circulating I-LPS is so low that most effects of peripherally administered LPS are likely mediated through LPS receptors located outside the BBB.


Experimental Neurology | 2005

Permeability of the blood–brain barrier to HIV-1 Tat

William A. Banks; Sandra M. Robinson; Avindra Nath

Infection with human immunodeficiency virus-1 (HIV-1) is associated with dysfunctions of the central nervous system (CNS). HIV-1 induces its effects on the CNS by a variety of mechanisms, including by shedding the neurotoxic viral proteins such as gp120 and Tat. Both HIV-1 and gp120 have been shown to cross the blood-brain barrier (BBB). It is has not been determined, however, whether blood-borne Tat can cross the BBB. Here, we found that Tat crosses the BBB by a nonsaturable mechanism with a unidirectional influx rate of about 0.490 microl/g/min. About 0.126% of an intravenous dose of Tat enters each g of brain. Radioactively labeled albumin injected simultaneously did not cross the BBB. The hypothalamus, occipital cortex, and hippocampus were the regions of the brain most permeable to Tat. Nonsaturable brain-to-blood efflux also occurred, most likely with reabsorption into the blood of the cerebrospinal fluid. In conclusion, we found that Tat crossed the BBB bidirectionally. Such permeability could provide a mechanism by which Tat produced on one side of the BBB could affect neural or immune function on the other side.


Peptides | 2008

Effects of Triglycerides, Obesity, and Starvation on Ghrelin Transport Across the Blood-Brain Barrier

William A. Banks; Basil O. Burney; Sandra M. Robinson

Human ghrelin is transported across the blood-brain barrier (BBB) of normal mice. Here, we studied the effects of triglycerides, obesity, and starvation in retired breeder mice maintained on a high fat diet, mice age-matched to the retired breeders but maintained on normal chow, and 8-week-old mice maintained on breeder chow. The rate of ghrelin transport across the BBB was studied by both the intravenous administration method of multiple-time regression analysis and by the brain perfusion method. We found that (1) obese, aged mice lost the ability to transport intravenously administered ghrelin across the BBB, resulting in an inverse relation between body weight and ghrelin BBB permeability; (2) serum triglycerides promoted transport of intravenously administered ghrelin across the BBB, whereas epinephrine had no effect; (3) fasting tended to promote ghrelin transport across the BBB as most readily shown in brain perfusion studies; (4) evidence suggested that a serum factor promoted ghrelin transport in 8-week-old mice. Overall, these results show that serum factors and physiological states influence the rate at which ghrelin is transported across the blood-brain barrier.


Journal of Virology | 2001

Transport of human immunodeficiency virus type 1 pseudoviruses across the blood-brain barrier: role of envelope proteins and adsorptive endocytosis.

William A. Banks; Eric O. Freed; Kathleen M. Wolf; Sandra M. Robinson; Mark Franko; Vijaya B. Kumar

ABSTRACT Blood-borne human immunodeficiency virus type 1 (HIV-1) crosses the blood-brain barrier (BBB) to induce brain dysfunction. How HIV-1 crosses the BBB is unclear. Most work has focused on the ability of infected immune cells to cross the BBB, with less attention devoted to the study of free virus. Since the HIV-1 coat glycoprotein gp120 can cross the BBB, we postulated that gp120 might be key in determining whether free virus can cross the BBB. We used radioactive virions which do (Env+) or do not (Env−) bear the envelope proteins to characterize the ability of HIV-1 to be taken up by the murine BBB. In vivo and in vitro studies showed that the envelope proteins are key to the uptake of free virus and that uptake was enhanced by wheat germ agglutinin, strongly suggesting that the envelope proteins induce viral adsorptive endocytosis and transcytosis in brain endothelia. Capillary depletion showed that Env+virus completely crossed the vascular BBB to enter the parenchyma of the brain. Virus also entered the cerebrospinal fluid, suggesting passage across the choroid plexus as well. About 0.22% of the intravenously injected dose was taken up per g of brain. In vitro studies showed that postinternalization membrane cohesion (membrane binding not reversed with acid wash or cell lysis) was a regulated event. Intact virus was recovered from the brain endothelial cytosol and was effluxed from the endothelial cells. These results show that free HIV-1 can cross the BBB by an event related to adsorptive endocytosis and mediated by the envelope proteins.


Journal of Alzheimer's Disease | 2009

Testing the Neurovascular Hypothesis of Alzheimer’s Disease: LRP-1 Antisense Reduces Blood-Brain Barrier Clearance, Increases Brain Levels of Amyloid-β Protein, and Impairs Cognition

Laura B. Jaeger; Shinya Dohgu; M. Hwang; Susan A. Farr; M. Paul Murphy; Melissa A. Fleegal-DeMotta; Jessica L. Lynch; Sandra M. Robinson; Michael L. Niehoff; Steven N. Johnson; Vijaya B. Kumar; William A. Banks

Decreased clearance is the main reason amyloid-beta protein (Abeta) is increased in the brains of patients with Alzheimers disease (AD). The neurovascular hypothesis states that this decreased clearance is caused by impairment of low density lipoprotein receptor related protein-1 (LRP-1), the major brain-to-blood transporter of Abeta at the blood-brain barrier (BBB). As deletion of the LRP-1 gene is a lethal mutation, we tested the neurovascular hypothesis by developing a cocktail of phosphorothioate antisenses directed against LRP-1 mRNA. We found these antisenses in comparison to random antisense selectively decreased LRP-1 expression, reduced BBB clearance of Abeta42, increased brain levels of Abeta42, and impaired learning ability and recognition memory in mice. These results support dysfunction of LRP-1 at the BBB as a mechanism by which brain levels of Abeta could increase and AD would be promoted.


Neuroscience | 2003

Efflux of human and mouse amyloid β proteins 1–40 and 1–42 from brain: impairment in a mouse model of alzheimer's disease

William A. Banks; Sandra M. Robinson; Sulekha Verma; John E. Morley

Brain to blood transport is believed to be a major determinant of the amount of amyloid beta protein (AbetaP) found in brain. Impaired efflux has been suggested as a mechanism by which AbetaP can accumulate in the CNS and so lead to Alzheimers disease (AD). To date, however, no study of the efflux of the form of AbetaP most relevant to AD, AbetaP1-42, has been conducted, even though a single amino acid substitution in AbetaP can greatly alter efflux. Here, we examined the efflux of AbetaP mouse1-42, mouse1-40, human1-42, and human1-40 in young CD-1, young senesence accelerated mouse (SAM) P8, and aged SAMP8 mice. The SAMP8 mouse with aging spontaneously overproduces AbetaP and develops cognitive impairments reversed by AbetaP-directed antibody or phosphorothioate antisense oligonucleotide. CD-1 mice transported all forms of AbetaP, although mouse1-42 and human1-40 were transported faster than the other forms. There was a decrease in the saturable transport of mouse1-42 in SAMP8 mice regardless of age. Efflux of mouse1-40 and human1-42 was only by a non-saturable mechanism in young SAMP8 mice and their efflux was totally absent in aged SAMP8 mice. These differences in the efflux of the various forms of AbetaP among the three groups of mice supports the hypothesis that impaired efflux is an important factor in the accumulation of AbetaP in the CNS.


PLOS ONE | 2012

Human immunodeficiency virus-1 uses the mannose-6-phosphate receptor to cross the blood-brain barrier.

Shinya Dohgu; Jan S. Ryerse; Sandra M. Robinson; William A. Banks

HIV-1 circulates both as free virus and within immune cells, with the level of free virus being predictive of clinical course. Both forms of HIV-1 cross the blood-brain barrier (BBB) and much progress has been made in understanding the mechanisms by which infected immune cells cross the blood-brain barrier BBB. How HIV-1 as free virus crosses the BBB is less clear as brain endothelial cells are CD4 and galactosylceramide negative. Here, we found that HIV-1 can use the mannose-6 phosphate receptor (M6PR) to cross the BBB. Brain perfusion studies showed that HIV-1 crossed the BBB of all brain regions consistent with the uniform distribution of M6PR. Ultrastructural studies showed HIV-1 crossed by a transcytotic pathway consistent with transport by M6PR. An in vitro model of the BBB was used to show that transport of HIV-1 was inhibited by mannose, mannan, and mannose-6 phosphate and that enzymatic removal of high mannose oligosaccharide residues from HIV-1 reduced transport. Wheatgerm agglutinin and protamine sulfate, substances known to greatly increase transcytosis of HIV-1 across the BBB in vivo, were shown to be active in the in vitro model and to act through a mannose-dependent mechanism. Transport was also cAMP and calcium-dependent, the latter suggesting that the cation-dependent member of the M6PR family mediates HIV-1 transport across the BBB. We conclude that M6PR is an important receptor used by HIV-1 to cross the BBB.


Peptides | 2007

Copper complexing decreases the ability of amyloid beta peptide to cross the BBB and enter brain parenchyma.

Suneetha Mare; Suman Penugonda; Sandra M. Robinson; Shinya Dohgu; William A. Banks; Nuran Ercal

The amyloid hypothesis states that amyloid beta protein (Abeta) plays a major causal role in the onset of Alzheimers disease. Toxicity of Abeta can be modified by metal ions. Two mechanisms by which such Abeta and metal ions could interact are by enhanced oxidative stress or by altered fibrillation. Specifically, Abeta fibrillation is increased by aluminum (Al) and copper (Cu) and Al also increases Abeta uptake into brain. Here, we determined whether chelation with Cu would alter uptake of the human or rat 1-42 form of Abeta (Abeta42) by brain or alter Abeta-induced oxidative stress in an immortalized line of rat brain endothelial cells (RBE4). We found that Cu enhanced cytotoxicity of rat, but not of human Abeta, had no effect on glutathione (GSH) or cysteine (CYS) levels. Cu significantly decreased homocysteine (HCYS) levels when complexed with Abeta. Cu chelation did not alter Abeta uptake into brain or other tissues (except for kidney) or alter clearance from blood or brain in vivo, but did increase efflux in an in vitro model of the blood-brain barrier (BBB). Chelation to Cu also impaired the capillary to brain transport of Abeta, an effect opposite to that previously found for chelation of Abeta to Al. These results show that metal ions have varied effects on Abeta uptake by brain and that Cu could be protective against the neurotoxic effects of circulating Abeta.


Neuroscience | 2004

Binding, internalization, and membrane incorporation of human immunodeficiency virus-1 at the blood-brain barrier is differentially regulated.

William A. Banks; Sandra M. Robinson; Kathleen M. Wolf; Julian W. Bess; Larry O. Arthur

Human immunodeficiency virus (HIV)-1 within the CNS induces neuro-acquired immunodeficiency syndrome and acts as a reservoir for reinfection of peripheral tissues. HIV-1 crosses the blood-brain barrier (BBB) within infected immune cells and as cell-free virus by a CD4-independent mechanism. Which proteins control free virus transport across the BBB are unknown, but work with wheatgerm agglutinin (WGA) and heparin suggests that heparan sulfate proteoglycans, sialic acid, and N-acetyl-beta-D-glucosaminyl acid bind HIV-1. Here, we found that an HIV-1 T-tropic virus was taken up by mouse brain endothelial cells in vitro and crossed the BBB in vivo and could be effluxed as intact virus. Uptake was stimulated by WGA and protamine sulfate (PS) and inhibited by heparin. BBB uptake of virus involved four distinguishable binding sites: i) reversible cell surface binding involving gp120 and sensitive to PS/heparin but insensitive to WGA; internalization with a ii) WGA-sensitive site binding gp120 and iii) a PS/heparin-sensitive site not involving gp120; iv) membrane incorporation not affected by WGA, heparin, or PS. In conclusion, binding, internalization, and membrane incorporation are separately regulated steps likely determining whether HIV-1 is incorporated into brain endothelial cells, transported across them, or returned to the circulation.


Experimental Neurology | 2009

Transport of prion protein across the blood-brain barrier

William A. Banks; Sandra M. Robinson; Rodrigo Diaz-Espinoza; Akihiko Urayama; Claudio Soto

The cellular form of the prion protein (PrP(c)) is necessary for the development of prion diseases and is a highly conserved protein that may play a role in neuroprotection. PrP(c) is found in both blood and cerebrospinal fluid and is likely produced by both peripheral tissues and the central nervous system (CNS). Exchange of PrP(c) between the brain and peripheral tissues could have important pathophysiologic and therapeutic implications, but it is unknown whether PrP(c) can cross the blood-brain barrier (BBB). Here, we found that radioactively labeled PrP(c) crossed the BBB in both the brain-to-blood and blood-to-brain directions. PrP(c) was enzymatically stable in blood and in brain, was cleared by liver and kidney, and was sequestered by spleen and the cervical lymph nodes. Circulating PrP(c) entered all regions of the CNS, but uptake by the lumbar and cervical spinal cord, hypothalamus, thalamus, and striatum was particularly high. These results show that PrP(c) has bidirectional, saturable transport across the BBB and selectively targets some CNS regions. Such transport may play a role in PrP(c) function and prion replication.

Collaboration


Dive into the Sandra M. Robinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander V. Kabanov

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Anil D. Kulkarni

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Elena V. Batrakova

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Serguei V. Vinogradov

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge