Sandra N. Oliver
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra N. Oliver.
The Plant Cell | 2009
Katharina Bräutigam; Lars Dietzel; Tatjana Kleine; Elke Ströher; Dennis Wormuth; Karl-Josef Dietz; Dörte Radke; Markus Wirtz; Rüdiger Hell; Peter Dörmann; Adriano Nunes-Nesi; Nicolas Schauer; Alisdair R. Fernie; Sandra N. Oliver; Peter Geigenberger; Dario Leister; Thomas Pfannschmidt
Plants possess acclimation responses in which structural reconfigurations adapt the photosynthetic apparatus to fluctuating illumination. Long-term acclimation involves changes in plastid and nuclear gene expression and is controlled by redox signals from photosynthesis. The kinetics of these signals and the adjustments of energetic and metabolic demands to the changes in the photosynthetic apparatus are currently poorly understood. Using a redox signaling system that preferentially excites either photosystem I or II, we measured the time-dependent impact of redox signals on the transcriptome and metabolome of Arabidopsis thaliana. We observed rapid and dynamic changes in nuclear transcript accumulation resulting in differential and specific expression patterns for genes associated with photosynthesis and metabolism. Metabolite pools also exhibited dynamic changes and indicate readjustments between distinct metabolic states depending on the respective illumination. These states reflect reallocation of energy resources in a defined and reversible manner, indicating that structural changes in the photosynthetic apparatus during long-term acclimation are additionally supported at the level of metabolism. We propose that photosynthesis can act as an environmental sensor, producing retrograde redox signals that trigger two parallel adjustment loops that coordinate photosynthesis and metabolism to adapt plant primary productivity to the environment.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Sandra N. Oliver; E. J. Finnegan; Elizabeth S. Dennis; W. J. Peacock; Ben Trevaskis
Prolonged exposure to low temperatures (vernalization) accelerates the transition to reproductive growth in many plant species, including the model plant Arabidopsis thaliana and the economically important cereal crops, wheat and barley. Vernalization-induced flowering is an epigenetic phenomenon. In Arabidopsis, stable down-regulation of FLOWERING LOCUS C (FLC) by vernalization is associated with changes in histone modifications at FLC chromatin. In cereals, the vernalization response is mediated by stable induction of the floral promoter VERNALIZATION1 (VRN1), which initiates reproductive development at the shoot apex. We show that in barley (Hordeum vulgare), repression of HvVRN1 before vernalization is associated with high levels of histone 3 lysine 27 trimethylation (H3K27me3) at HvVRN1 chromatin. Vernalization caused increased levels of histone 3 lysine 4 trimethylation (H3K4me3) and a loss of H3K27me3 at HvVRN1, suggesting that vernalization promotes an active chromatin state at VRN1. Levels of these histone modifications at 2 other flowering-time genes, VERNALIZATION2 and FLOWERING LOCUS T, were not altered by vernalization. Our study suggests that maintenance of an active chromatin state at VRN1 is likely to be the basis for epigenetic memory of vernalization in cereals. Thus, regulation of chromatin state is a feature of epigenetic memory of vernalization in Arabidopsis and the cereals; however, whereas vernalization-induced flowering in Arabidopsis is mediated by epigenetic regulation of the floral repressor FLC, this phenomenon in cereals is mediated by epigenetic regulation of the floral activator, VRN1.
Plant Physiology | 2008
Ana Zabalza; Joost T. van Dongen; Anja Froehlich; Sandra N. Oliver; Benjamin Faix; Kapuganti Jagadis Gupta; Elmar Schmälzlin; Maria Igal; Luis Orcaray; Mercedes Royuela; Peter Geigenberger
Plant internal oxygen concentrations can drop well below ambient even when the plant grows under optimal conditions. Using pea (Pisum sativum) roots, we show how amenable respiration adapts to hypoxia to save oxygen when the oxygen availability decreases. The data cannot simply be explained by oxygen being limiting as substrate but indicate the existence of a regulatory mechanism, because the oxygen concentration at which the adaptive response is initiated is independent of the actual respiratory rate. Two phases can be discerned during the adaptive reaction: an initial linear decline of respiration is followed by a nonlinear inhibition in which the respiratory rate decreased progressively faster upon decreasing oxygen availability. In contrast to the cytochrome c pathway, the inhibition of the alternative oxidase pathway shows only the linear component of the adaptive response. Feeding pyruvate to the roots led to an increase of the oxygen consumption rate, which ultimately led to anoxia. The importance of balancing the in vivo pyruvate availability in the tissue was further investigated. Using various alcohol dehydrogenase knockout lines of Arabidopsis (Arabidopsis thaliana), it was shown that even under aerobic conditions, alcohol fermentation plays an important role in the control of the level of pyruvate in the tissue. Interestingly, alcohol fermentation appeared to be primarily induced by a drop in the energy status of the tissue rather than by a low oxygen concentration, indicating that sensing the energy status is an important component of optimizing plant metabolism to changes in the oxygen availability.
The Plant Cell | 2011
Danilo C. Centeno; Sonia Osorio; Adriano Nunes-Nesi; Ana L.F. Bertolo; Raphael T. Carneiro; Wagner L. Araújo; Marie-Caroline Steinhauser; Justyna Michalska; Johannes Rohrmann; Peter Geigenberger; Sandra N. Oliver; Mark Stitt; Fernando Carrari; Jocelyn K. C. Rose; Alisdair R. Fernie
The authors show how modulating levels of malate, an abundant metabolite of the tomato fruit, substantially impacts many aspects of fruit ripening and development. Altering malate content also affects postharvest characteristics, including softening susceptibility and pathogenic infection. Despite the fact that the organic acid content of a fruit is regarded as one of its most commercially important quality traits when assessed by the consumer, relatively little is known concerning the physiological importance of organic acid metabolism for the fruit itself. Here, we evaluate the effect of modifying malate metabolism in a fruit-specific manner, by reduction of the activities of either mitochondrial malate dehydrogenase or fumarase, via targeted antisense approaches in tomato (Solanum lycopersicum). While these genetic perturbations had relatively little effect on the total fruit yield, they had dramatic consequences for fruit metabolism, as well as unanticipated changes in postharvest shelf life and susceptibility to bacterial infection. Detailed characterization suggested that the rate of ripening was essentially unaltered but that lines containing higher malate were characterized by lower levels of transitory starch and a lower soluble sugars content at harvest, whereas those with lower malate contained higher levels of these carbohydrates. Analysis of the activation state of ADP-glucose pyrophosphorylase revealed that it correlated with the accumulation of transitory starch. Taken together with the altered activation state of the plastidial malate dehydrogenase and the modified pigment biosynthesis of the transgenic lines, these results suggest that the phenotypes are due to an altered cellular redox status. The combined data reveal the importance of malate metabolism in tomato fruit metabolism and development and confirm the importance of transitory starch in the determination of agronomic yield in this species.
Plant Physiology | 2006
Anna Kolbe; Sandra N. Oliver; Alisdair R. Fernie; Mark Stitt; Joost T. van Dongen; Peter Geigenberger
In this study, we used gas chromatography-mass spectrometry analysis in combination with flux analysis and the Affymetrix ATH1 GeneChip to survey the metabolome and transcriptome of Arabidopsis (Arabidopsis thaliana) leaves in response to manipulation of the thiol-disulfide status. Feeding low concentrations of the sulfhydryl reagent dithiothreitol for 1 h at the end of the dark period led to posttranslational redox activation of ADP-glucose pyrophosphorylase and major alterations in leaf carbon partitioning, including an increased flux into major respiratory pathways, starch, cell wall, and amino acid synthesis, and a reduced flux to sucrose. This was accompanied by a decrease in the levels of hexose phosphates, while metabolites in the second half of the tricarboxylic acid cycle and various amino acids increased, indicating a stimulation of anaplerotic fluxes reliant on α-ketoglutarate. There was also an increase in shikimate as a precursor of secondary plant products and marked changes in the levels of the minor sugars involved in ascorbate synthesis and cell wall metabolism. Transcript profiling revealed a relatively small number of changes in the levels of transcripts coding for components of redox regulation, transport processes, and cell wall, protein, and amino acid metabolism, while there were no major alterations in transcript levels coding for enzymes involved in central metabolic pathways. These results provide a global picture of the effect of redox and reveal the utility of transcript and metabolite profiling as systemic strategies to uncover the occurrence of redox modulation in vivo.
Journal of Experimental Botany | 2009
Shahryar Sasani; Megan N. Hemming; Sandra N. Oliver; Aaron Greenup; Reza Tavakkol-Afshari; Siroos Mahfoozi; Kazem Poustini; Hamid-Reza Sharifi; Elizabeth S. Dennis; W. James Peacock; Ben Trevaskis
Responses to prolonged low-temperature treatment of imbibed seeds (vernalization) were examined in barley (Hordeum vulgare). These occurred in two phases: the perception of prolonged cold, which occurred gradually at low temperatures, and the acceleration of reproductive development, which occurred after vernalization. Expression of the VERNALIZATION1 gene (HvVRN1) increased gradually in germinating seedlings during vernalization, both at the shoot apex and in the developing leaves. This occurred in darkness, independently of VERNALIZATION2 (HvVRN2), consistent with the hypothesis that expression of HvVRN1 is induced by prolonged cold independently of daylength flowering-response pathways. After vernalization, expression of HvVRN1 was maintained in the shoot apex and leaves. This was associated with accelerated inflorescence initiation and with down-regulation of HvVRN2 in the leaves. The largest determinant of HvVRN1 expression levels in vernalized plants was the length of seed vernalization treatment. Daylength did not influence HvVRN1 expression levels in shoot apices and typically did not affect expression in leaves. In the leaves of plants that had experienced a saturating seed vernalization treatment, expression of HvVRN1 was higher in long days, however. HvFT1 was expressed in the leaves of these plants in long days, which might account for the elevated HvVRN1 expression. Long-day up-regulation of HvVRN1 was not required for inflorescence initiation, but might accelerate subsequent stages of inflorescence development. Similar responses to seed vernalization were also observed in wheat (Triticum aestivum). These data support the hypothesis that VRN1 is induced by cold during winter to promote spring flowering in vernalization-responsive cereals.
Plant Physiology | 2008
Sandra N. Oliver; John E. Lunn; Ewa Urbanczyk-Wochniak; Anna Lytovchenko; Joost T. van Dongen; Benjamin Faix; Elmar Schmälzlin; Alisdair R. Fernie; Peter Geigenberger
The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo.
Plant Physiology | 2010
Aaron G. Greenup; Shahryar Sasani; Sandra N. Oliver; Mark J. Talbot; Elizabeth S. Dennis; Megan N. Hemming; Ben Trevaskis
In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization. Vernalization represses OS2 independently of VERNALIZATION1 (VRN1) in a VRN1 deletion mutant of einkorn wheat (Triticum monococcum), but VRN1 is required to maintain down-regulation of OS2 in vernalized plants. Furthermore, barleys that carry active alleles of the VRN1 gene (HvVRN1) have reduced expression of HvOS2, suggesting that HvVRN1 down-regulates HvOS2 during development. Overexpression of HvOS2 delayed flowering and reduced spike, stem, and leaf length in transgenic barley plants. Plants overexpressing HvOS2 showed reduced expression of barley homologs of the Arabidopsis (Arabidopsis thaliana) gene FLOWERING PROMOTING FACTOR1 (FPF1) and increased expression of RNase-S-like genes. FPF1 promotes floral development and enhances cell elongation, so down-regulation of FPF1-like genes might explain the phenotypes of HvOS2 overexpression lines. We present an extended model of the genetic pathways controlling vernalization-induced flowering in cereals, which describes the regulatory relationships between VRN1, OS2, and FPF1-like genes. Overall, these findings highlight differences and similarities between the vernalization responses of temperate cereals and the model plant Arabidopsis.
PLOS ONE | 2011
Aaron G. Greenup; Sharyar Sasani; Sandra N. Oliver; Sally A. Walford; Anthony A. Millar; Ben Trevaskis
Temperate cereals, such as wheat (Triticum spp.) and barley (Hordeum vulgare), respond to prolonged cold by becoming more tolerant of freezing (cold acclimation) and by becoming competent to flower (vernalization). These responses occur concomitantly during winter, but vernalization continues to influence development during spring. Previous studies identified VERNALIZATION1 (VRN1) as a master regulator of the vernalization response in cereals. The extent to which other genes contribute to this process is unclear. In this study the Barley1 Affymetrix chip was used to assay gene expression in barley seedlings during short or prolonged cold treatment. Gene expression was also assayed in the leaves of plants after prolonged cold treatment, in order to identify genes that show lasting responses to prolonged cold, which might contribute to vernalization-induced flowering. Many genes showed altered expression in response to short or prolonged cold treatment, but these responses differed markedly. A limited number of genes showed lasting responses to prolonged cold treatment. These include genes known to be regulated by vernalization, such as VRN1 and ODDSOC2, and also contigs encoding a calcium binding protein, 23-KD jasmonate induced proteins, an RNase S-like protein, a PR17d secretory protein and a serine acetyltransferase. Some contigs that were up-regulated by short term cold also showed lasting changes in expression after prolonged cold treatment. These include COLD REGULATED 14B (COR14B) and the barley homologue of WHEAT COLD SPECIFIC 19 (WSC19), which were expressed at elevated levels after prolonged cold. Conversely, two C-REPEAT BINDING FACTOR (CBF) genes showed reduced expression after prolonged cold. Overall, these data show that a limited number of barley genes exhibit lasting changes in expression after prolonged cold treatment, highlighting the central role of VRN1 in the vernalization response in cereals.
PLOS ONE | 2011
Maria M. Alonso-Peral; Sandra N. Oliver; M. Cristina Casao; Aaron Greenup; Ben Trevaskis
The VERNALIZATION1 (VRN1) gene of temperate cereals is transcriptionally activated by prolonged cold during winter (vernalization) to promote flowering. To investigate the mechanisms controlling induction of VRN1 by prolonged cold, different regions of the VRN1 gene were fused to the GREEN FLUORESCENT PROTEIN (GFP) reporter and expression of the resulting gene constructs was assayed in transgenic barley (Hordeum vulgare). A 2 kb segment of the promoter of VRN1 was sufficient for GFP expression in the leaves and shoot apex of transgenic barley plants. Fluorescence increased at the shoot apex prior to inflorescence initiation and was subsequently maintained in the developing inflorescence. The promoter was also sufficient for low-temperature induction of GFP expression. A naturally occurring insertion in the proximal promoter, which is associated with elevated VRN1 expression and early flowering in some spring wheats, did not abolish induction of VRN1 transcription by prolonged cold, however. A translational fusion of the promoter and transcribed regions of VRN1 to GFP, VRN1::GFP, was localised to nuclei of cells at the shoot apex of transgenic barley plants. The distribution of VRN1::GFP at the shoot apex was similar to the expression pattern of the VRN1 promoter-GFP reporter gene. Fluorescence from the VRN1::GFP fusion protein increased in the developing leaves after prolonged cold treatment. These observations suggest that the promoter of VRN1 is targeted by mechanisms that trigger vernalization-induced flowering in economically important temperate cereal crops.
Collaboration
Dive into the Sandra N. Oliver's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs