Sandra N. Summer
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra N. Summer.
Journal of The American Society of Nephrology | 2008
Chunling Li; Weidong Wang; Sandra N. Summer; Timothy D. Westfall; David P. Brooks; Sandor Falk; Robert W. Schrier
Oxytocin is known to have an antidiuretic effect, but the mechanisms underlying this effect are not completely understood. We infused oxytocin by osmotic minipump into vasopressin-deficient Brattleboro rats for five days and observed marked antidiuresis, increased urine osmolality, and increased solute-free water reabsorption. Administration of oxytocin also significantly increased the protein levels of aquaporin-2 (AQP2), phosphorylated AQP2 (p-AQP2), and AQP3 in the inner medulla and in the outer medulla plus cortex. Immunohistochemistry demonstrated increased AQP2 and p-AQP2 expression and trafficking to the apical plasma membrane of principal cells in the collecting duct, and increased AQP3 expression in the basolateral membrane. These oxytocin-induced effects were blocked by treatment with the vasopressin V2 receptor antagonist SR121463B, but not by treatment with the oxytocin receptor antagonist GW796679X. We conclude that vasopressin V2 receptors mediate the antidiuretic effects of oxytocin, including increased expression and apical trafficking of AQP2, p-AQP2, and increased AQP3 protein expression.
American Journal of Physiology-renal Physiology | 2008
Weidong Wang; Chunling Li; Sandra N. Summer; Sandor Falk; Wei Wang; Danica Galešić Ljubanović; Robert W. Schrier
The effect of endotoxemia (lipopolysaccharide, 2.5 mg/kg ip) was investigated in aquaporin (AQP) 1 knockout (KO) compared with wild-type (WT) mice. At baseline, KO mice exhibited higher water intake (WI) and urine output (UO). After endotoxemia, WI and UO remained higher in the KO than WT mice, and urine osmolality was lower. The higher serum osmolality in AQP1-KO mice during endotoxemia was associated with higher AQP2 (133 +/- 8 vs. 100 +/- 3%, P < 0.01), AQP3 (140 +/- 8 vs. 100 +/- 4%, P < 0.001) and Na(+)-K(+)-2Cl(-) cotransporter type 2 (NKCC2; 152 +/- 14 vs. 100 +/- 15%, P < 0.05) expression than that in WT mice. These responses during endotoxemia in the AQP1-KO mice compared with WT were associated with lower glomerular filtration rate (GFR) (69 +/- 8 vs. 96 +/- 8 ml/min, P < 0.05) and renal blood flow (0.77 +/- 0.1 vs. 1.01 +/- 0.1 ml/min, P < 0.01). Urinary sodium excretion and fractional sodium excretion were higher in KO compared with WT mice in endotoxemia and were accompanied by more severe tubular injury. With water repletion and comparable serum osmolalities, GFR was still lower in KO (57 +/- 13 vs. 120 +/- 6 ml/min, P < 0.01) compared with WT during endotoxemia. The abundance of AQP2 and AQP3 protein in KO mice was not different from WT mice; however, NKCC2, Na(+)/H(+) exchanger type 3, and fractional sodium excretion remained higher in KO compared with WT. Thus the polyuria in AQP1-KO mice does not protect against endotoxemia-induced acute kidney injury but rather absence of AQP1 predisposed to enhanced endotoximic renal injury.
Journal of The American Society of Nephrology | 2003
Melissa A. Cadnapaphornchai; Yang-Wook Kim; Andrey K. Gurevich; Sandra N. Summer; Sandor Falk; Joshua M. Thurman; Robert W. Schrier
Hypothyroidism is associated with impaired urinary concentrating ability in humans and animals. The purpose of this study was to examine protein expression of renal sodium chloride and urea transporters and aquaporins in hypothyroid rats (HT) with diminished urinary concentration as compared with euthyroid controls (CTL) and hypothyroid rats replaced with L-thyroxine (HT+T). Hypothyroidism was induced by aminotriazole administration. Body weight, water intake, urine output, solute and urea excretion, serum and urine osmolality, serum creatinine, 24-h creatinine clearance, and fractional excretion of sodium were comparable among the three groups. However, with 36 h of water deprivation, HT rats demonstrated significantly greater urine flow rates and decreased urine and medullary osmolality as compared with CTL and HT+T rats at comparable plasma vasopressin concentrations. Western blot analyses revealed decreased renal protein abundance of transporters, including Na-K-2Cl, Na-K-ATPase, and NHE3, in HT rats as compared with CTL and HT+T rats. Protein abundance of renal AQP1 and urea transporters UTA(1) and UTA(2) did not differ significantly among study groups. There was however a significant decrease in protein abundance of AQP2, AQP3, and AQP4 in HT rats as compared with CTL and HT+T rats. These findings demonstrate a decrease in the medullary osmotic gradient secondary to impaired countercurrent multiplication and downregulation of aquaporins 2, 3, and 4 as contributors to the urinary concentrating defect in the hypothyroid rat.
American Journal of Physiology-renal Physiology | 2011
Chunling Li; Weidong Wang; Christopher J. Rivard; Miguel A. Lanaspa; Sandra N. Summer; Robert W. Schrier
ANG II plays a major role in renal water and sodium regulation. In the immortalized mouse renal collecting duct principal cells (mpkCCD(cl4)) cell line, we treated cells with ANG II and examined aquaporin-2 (AQP2) protein expression, trafficking, and mRNA levels, by immunoblotting, immunofluorescence, and RT-PCR. After 24-h incubation, ANG II-induced AQP2 protein expression was observed at the concentration of 10(-10) M and increased in a dose-dependent manner. ANG II (10(-7) M) increased AQP2 protein expression and mRNA levels at 0.5, 1, 2, 6, and 24 h. Immunofluorescence studies showed that ANG II increased the apical membrane targeting of AQP2 from 30 min to 6 h. Next, the signaling pathways underlying the ANG II-induced AQP2 expression were investigated. The PKC inhibitor Ro 31-8220 (5 × 10(-6) M) and the PKA inhibitor H89 (10(-5) M) blocked ANG II-induced AQP2 expression, respectively. Calmodulin inhibitor W-7 markedly reduced ANG II- and/or dDAVP-stimulated AQP2 expression. ANG II (10(-9) M) and/or dDAVP (10(-10) M) stimulated AQP2 protein levels and cAMP accumulation, which was completely blocked by pretreatment with the vasopressin V2 receptor (V2R) antagonist SR121463B (10(-8) M). Pretreatment with the angiotensin AT(1) receptor (AT1R) antagonist losartan (3 × 10(-6) M) blocked ANG II (10(-9) M)-stimulated AQP2 protein expression and cAMP accumulation, and partially blocked dDAVP (10(-10) M)- and dDAVP+ANG II-induced AQP2 protein expression and cAMP accumulation. In conclusion, ANG II regulates AQP2 protein, trafficking, and gene expression in renal collecting duct principal cells. ANG II-induced AQP2 expression involves cAMP, PKC, PKA, and calmodulin signaling pathways via V2 and AT(1) receptors.
American Journal of Kidney Diseases | 1995
Heui‐Jung Pyo; Sandra N. Summer; Michel Niederberger; Jin K. Kim; Robert W. Schrier
Nephrotic syndrome is characterized by water and sodium retention, which leads to edema formation. The nonosmotic stimulation of arginine vasopressin (AVP) release from the pituitary gland has been implicated to be one of the important factors of abnormal water retention in patients with nephrotic syndrome. It is not known, however, whether nephrotic syndrome is associated with stimulation of hypothalamic vasopressin gene expression. Puromycin aminonucleoside is known to cause altered glomerular permeability, which results in experimental nephrotic syndrome in rats. In the present study, therefore, AVP gene expression has been studied in the hypothalamus of rats with puromycin aminonucleoside-induced nephrotic syndrome (PNS). Nephrotic syndrome was induced by a single intravenous injection of puromycin aminonucleoside (50 mg/kg body weight). Nephrotic syndrome was confirmed by urinary protein excretion (control 20.8 +/- 3.5 mg/24 hr v PNS 273.9 +/- 41.4 mg/24 hr; P < 0.0001, n = 6) and serum albumin concentrations (control 4.52 +/- 0.07 g/dL v PNS 2.96 +/- 0.22 g/dL; P < 0.001, n = 6). In PNS rats, plasma AVP was significantly higher than in control rats (control 0.77 +/- 0.10 pg/mL v PNS 2.13 +/- 0.42 pg/mL; P < 0.005, n = 12), even though there were no differences in plasma osmolality (control 292.0 +/- 2.0 mOsm/kg H2O v PNS 290.3 +/- 2.5 mOsm/kg H2O; P = NS, n = 12) or serum sodium concentration (control 142.7 +/- 0.7 v PNS 142.1 +/- 1.1; PNS, n = 12).(ABSTRACT TRUNCATED AT 250 WORDS)
Journal of The American Society of Nephrology | 2006
Chunling Li; Weidong Wang; Sandra N. Summer; Melissa A. Cadnapaphornchai; Sandor Falk; Fuminori Umenishi; Robert W. Schrier
There are considerable experimental results that indicate that arginine vasopressin (AVP)-independent factors are involved in urinary concentration. This study examined the role of hyperosmolality in vivo to modulate aquaporin 2 (AQP2) and Na-K-2Cl co-transporter (NKCC2), pivotal factors in urinary concentration, in AVP-deficient Brattleboro (BB) rats. Hyperglycemia with associated hyperosmolality occurred in diabetic BB rats (BBDM). Protein abundance of AQP2 increased and was reversed by insulin in the inner medulla (IM; control 100+/-5%; BBDM 146+/-8%; BBDM+Ins 122+/-9%; P<0.001) and inner stripe of outer medulla (ISOM; control 100+/-4%; BBDM 123+/-8%; BBDM+Ins 93+/-6%; P<0.05). These results were confirmed by immunohistochemistry studies. NKCC2 rose in the ISOM but was not reversed with insulin treatment. For investigation of the role of hyperosmolality in the absence of hyperglycemia on the regulation of the expression of renal AQP and NKCC2, studies were performed with hyperosmolality that was induced by 0.5% NaCl in drinking water in BB rats. Hyperosmolality that was induced by NaCl increased significantly the protein abundance of IM AQP2 (121+/-2 versus 100+/-5%; P<0.01), ISOM AQP2 (135+/-6 versus 100+/-5%; P<0.001), cortex plus outer stripe of outer medulla AQP2 (121+/-4 versus 100+/-1%; P<0.001), ISOM NKCC2 (133+/-1 versus 100+/-4%; P<0.05), and cortex plus outer stripe of outer medulla NKCC2 (142+/-16 versus 100+/-9%; P<0.05). In conclusion, hyperosmolality, secondary to either glucose or NaCl, upregulated renal AQP2 and NKCC2 in vivo in BB rats.
American Journal of Kidney Diseases | 1992
Randy L. Howard; Sandra N. Summer; Noreen F. Rossi; Jin K. Kim; Robert W. Schrier
Hypothyroidism is associated with abnormalities in renal water handling, which include a delay in excretion of an acute water load, decreased urinary concentrating ability, and increased urine volume. In the present study, we investigated the role of vasopressin in aminotriazole-induced hypothyroidism by measuring vasopressin concentration in the plasma and pituitary along with vasopressin mRNA levels in the hypothalamus. After 5 weeks of aminotriazole treatment, L-thyroxine levels were significantly lower in the experimental animals (122 +/- 8 v 26 +/- 1 nmol/L [9.5 +/- 0.6 v 2.0 +/- 0.1 micrograms/dL]; P less than 0.001). Serum sodium (148 +/- 0.5 v 144 +/- 1.2 mmol/L [mEq/L]; P less than 0.01), and plasma osmolality (311 +/- 2.5 v 304 +/- 1.8 mmol/kg [mOsm/kg] H2O; P less than 0.05) were also lower in the experimental animals. There were no differences in plasma (1.9 +/- 0.4 v 1.5 +/- 0.2 pg/mL) or pituitary (1.5 +/- 0.4 v 1.5 +/- 0.2 microgram/pituitary) vasopressin levels. In addition, steady-state vasopressin mRNA levels were not different between the two groups (1,286 +/- 210 v 1,093 +/- 138 pg/hypothalamus). One week of L-thyroxine replacement resulted in significant increases in serum thyroxine levels without changes in the other variables measured. These results indicate that short-term hypothyroidism, which has been shown to exert substantial effects on renal function, causes only a modest central alteration in the plasma vasopressin-osmolality relationship, which occurs in the absence of detectable changes in vasopressin synthesis.
Journal of The American Society of Nephrology | 2005
Yung-Chang Chen; Melissa A. Cadnapaphornchai; Sandra N. Summer; Sandor Falk; Chunling Li; Weidong Wang; Robert W. Schrier
The purpose of this study was to examine urinary concentrating ability and protein expression of renal aquaporins and ion transporters in glucocorticoid-deficient (GD) rats in response to water deprivation as compared with control rats. Rats underwent bilateral adrenalectomies, followed only by aldosterone replacement (GD) or both aldosterone and dexamethasone replacement (control). As compared with control rats, the GD rats demonstrated a decrease in cardiac output and mean arterial pressure. In response to 36-h water deprivation, GD rats demonstrated significantly greater urine flow rate and decreased urine osmolality as compared with control rats at comparable serum osmolality and plasma vasopressin concentrations. The initiator of the countercurrent concentrating mechanism, the sodium-potassium-2 chloride co-transporter, was significantly decreased, as was the medullary osmolality in the GD rats versus control rats. There was also a decrease in inner medulla aquaporin-2 (AQP2) and urea transporter A1 (UT-A1) in GD rats as compared with control rats. There was a decrease in outer medulla Gsalpha protein, an important factor in vasopressin-mediated regulation of AQP2. Immunohistochemistry studies confirmed the decreased expression of AQP2 and UT-A1 in kidneys of GD rats as compared with control. In summary, impairment in the urinary concentrating mechanism was documented in GD rats in association with impaired countercurrent multiplication, diminished osmotic equilibration via AQP2, and diminished urea equilibration via UT-A1. These events occurred primarily in the relatively oxygen-deficient medulla and may have been initiated, at least in part, by the decrease in mean arterial pressure and thus renal perfusion pressure in this area of the kidney.
American Journal of Physiology-renal Physiology | 2010
Weidong Wang; Chunling Li; Sandra N. Summer; Sandor Falk; Robert W. Schrier
The study was undertaken to examine the potential cross talk between vasopressin and angiotensin II (ANG II) intracellular signaling pathways. We investigated in vivo and in vitro whether vasopressin-induced water reabsorption could be attenuated by ANG II AT1 receptor blockade (losartan). On a low-sodium diet (0.5 meq/day) dDAVP-treated animals with or without losartan exhibited comparable renal function [creatinine clearance 1.2 +/- 0.1 in dDAVP+losartan (LSDL) vs. 1.1 +/- 0.1 ml.100 g(-1).day(-1) in dDAVP alone (LSD), P > 0.05] and renal blood flow (6.3 +/- 0.5 in LSDL vs. 6.8 +/- 0.5 ml/min in LSD, P > 0.05). The urine output, however, was significantly increased in LSDL (2.5 +/- 0.2 vs. 1.8 +/- 0.2 ml.100 g(-1).day(-1), P < 0.05) in association with decreased urine osmolality (2,600 +/- 83 vs. 3,256 +/- 110 mosmol/kgH(2)O, P < 0.001) compared with rats in LSD. Immunoblotting revealed significantly decreased expression of medullary AQP2 (146 +/- 6 vs. 176 +/- 10% in LSD, P < 0.01), p-AQP2 (177 +/- 13 vs. 214 +/- 12% in LSD, P < 0.05), and AQP3 (134 +/- 14 vs. 177 +/- 11% in LSD, P < 0.05) in LSDL compared with LSD. The expressions of AQP1, the alpha(1)- and gamma-subunits of Na-K-ATPase, and the Na-K-2Cl cotransporter were not different among groups. In vitro studies showed that ANG II or dDAVP treatment was associated with increased AQP2 expression and cAMP levels, which were potentiated by cotreatment with ANG II and dDAVP and were inhibited by AT1 blockade. In conclusion, ANG II AT1 receptor blockade in dDAVP-treated rats on a low-salt diet was associated with decreased urine concentration and decreased inner medullary AQP2, p-AQP2, and AQP3 expression, suggesting that AT1 receptor activation plays a significant role in regulating aquaporin expression and modulating urine concentration in vivo. Studies in collecting duct cells were confirmatory.
Biochemical and Biophysical Research Communications | 2002
Mamiko Ohara; Melissa A. Cadnapaphornchai; Sandra N. Summer; Sandor Falk; Jianhui Yang; Tatsuo Togawa; Robert W. Schrier
Mineralocorticoid deficiency is associated with impaired urinary concentration and dilution. The present investigation was undertaken to determine the effects of selective mineralocorticoid deficiency on renal sodium and urea transporters and aquaporin water channels and whether these perturbations can be reversed by maintenance of extracellular fluid volume. Mineralocorticoid deficiency was induced by bilateral adrenalectomies with glucocorticoid replacement. Mineralocorticoid deficient rats receiving plain drinking water (MDW) were compared with mineralocorticoid deficient rats receiving saline-drinking water (MDS) in order to maintain extracellular fluid volume, and with controls (CTL). In MDW rats, there was a significant decrease in renal outer medulla Na-K-2Cl co-transporter and outer medulla Na-K-ATPase as well as an increase in inner medulla aquaporins 2 and 3. There were no significant changes in aquaporin-1, aquaporin-4, or urea transporters. These alterations were reversed with maintenance of extracellular fluid volume in MDS rats. Our findings indicate that mineralocorticoid deficiency in the rat is associated with alterations in factors involved in the countercurrent concentrating mechanism (Na-K-2Cl, Na-K-ATPase) and osmotic water equilibration in the collecting duct (AQP2, AQP3). Maintenance of sodium balance and extracellular fluid volume is associated with normalization of these perturbations.