Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Nuti is active.

Publication


Featured researches published by Sandra Nuti.


Journal of Experimental Medicine | 2002

Inhibition of Natural Killer Cells through Engagement of CD81 by the Major Hepatitis C Virus Envelope Protein

Stefania Crotta; Annalisa Stilla; Andreas Wack; Annalisa D'Andrea; Sandra Nuti; Ugo D'Oro; Marta Mosca; Franco Filliponi; R. Maurizia Brunetto; Sergio Abrignani; Nicholas M. Valiante

The immune response against hepatitis C virus (HCV) is rarely effective at clearing the virus, resulting in ∼170 million chronic HCV infections worldwide. Here we report that ligation of an HCV receptor (CD81) inhibits natural killer (NK) cells. Cross-linking of CD81 by the major envelope protein of HCV (HCV-E2) or anti-CD81 antibodies blocks NK cell activation, cytokine production, cytotoxic granule release, and proliferation. This inhibitory effect was observed using both activated and resting NK cells. Conversely, on NK-like T cell clones, including those expressing NK cell inhibitory receptors, CD81 ligation delivered a costimulatory signal. Engagement of CD81 on NK cells blocks tyrosine phosphorylation through a mechanism which is distinct from the negative signaling pathways associated with NK cell inhibitory receptors for major histocompatibility complex class I. These results implicate HCV-E2–mediated inhibition of NK cells as an efficient HCV evasion strategy targeting the early antiviral activities of NK cells and allowing the virus to establish itself as a chronic infection.


Journal of Experimental Medicine | 2003

CD1d-restricted Help To B Cells By Human Invariant Natural Killer T Lymphocytes

Grazia Galli; Sandra Nuti; Simona Tavarini; Luisa Galli-Stampino; Claudia de Lalla; Giulia Casorati; Paolo Dellabona; Sergio Abrignani

Invariant natural killer T (NKT) cells are a highly conserved subset of T lymphocytes expressing a semi-invariant T cell receptor (TCR), which is restricted to CD1d and specific for the glycosphingolipid antigen α-galactosylceramide. Their ability to secrete a variety of cytokines, which in turn modulate the activation of cells of both innate and acquired immune responses, suggests that invariant NKT cells exert a regulatory role mainly via indirect mechanisms. A relevant question is whether invariant NKT cells can directly help B cells. We document here that human invariant NKT cells are as efficient as conventional CD4+ Th0 lymphocytes in promoting proliferation of autologous memory and naive B lymphocytes in vitro, and in inducing immunoglobulin production. Help to B cells by invariant NKT cells is CD1d-dependent and delivered also in the absence of α-galactosylceramide, suggesting that NKT cells recognize an endogenous ligand presented by CD1d on B cells. The two major subsets of invariant NKT cells, CD4+ and double negative (CD4−CD8−), express comparable levels of CD40 ligand and cytokines, but differ in helper functions. Indeed, both subsets induce similar levels of B cell proliferation, whereas CD4+ NKT cells induce higher levels of immunoglobulin production. These results suggest a direct role for invariant NKT cells in regulating B lymphocyte proliferation and effector functions.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels

Grazia Galli; Duccio Medini; Erica Borgogni; Luisanna Zedda; Monia Bardelli; Carmine Malzone; Sandra Nuti; Simona Tavarini; Chiara Sammicheli; Anne Katrin Hilbert; Volker Brauer; Angelika Banzhoff; Rino Rappuoli; Giuseppe Del Giudice; Flora Castellino

Immune responses to vaccination are tested in clinical trials. This process usually requires years especially when immune memory and persistence are analyzed. Markers able to quickly predict the immune response would be very useful, particularly when dealing with emerging diseases that require a rapid response, such as avian influenza. To address this question we vaccinated healthy adults at days 1, 22, and 202 with plain or MF59-adjuvanted H5N1 subunit vaccines and tested both cell-mediated and antibody responses up to day 382. Only the MF59-H5N1 vaccine induced high titers of neutralizing antibodies, a large pool of memory H5N1-specific B lymphocytes, and H5-CD4+ T cells broadly reactive with drifted H5. The CD4+ response was dominated by IL-2+ IFN-γ− IL-13− T cells. Remarkably, a 3-fold increase in the frequency of virus-specific total CD4+ T cells, measurable after 1 dose, accurately predicted the rise of neutralizing antibodies after booster immunization and their maintenance 6 months later. We suggest that CD4+ T cell priming might be used as an early predictor of the immunogenicity of prepandemic vaccines.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Invariant NKT cells sustain specific B cell responses and memory

Grazia Galli; Paola Pittoni; Elena Tonti; Carmine Malzone; Yasushi Uematsu; Marco Tortoli; Domenico Maione; Gianfranco Volpini; Oretta Finco; Sandra Nuti; Simona Tavarini; Paolo Dellabona; Rino Rappuoli; Giulia Casorati; Sergio Abrignani

Invariant natural killer T (iNKT) cells are innate-like lymphocytes recognizing CD1d-restricted glycolipid antigens, such as α-galactosylceramide (αGC). We assessed whether iNKT cells help B lymphocyte responses and found that mice immunized with proteins and αGC develop antibody titers 1–2 logs higher than those induced by proteins alone. Activation of iNKT cells enhances protection against infections such as influenza and elicits higher frequencies of memory B cells and higher antibody responses to booster immunizations. Protein vaccination with αGC, but not with conventional adjuvants, elicits IgG responses in mice lacking MHC class II molecules, demonstrating that iNKT cells can substitute for CD4+ T cell help to B cells. Interestingly, the decay of circulating antibodies is faster in mice lacking iNKT cells. These findings point to a homeostatic role for iNKT cells on critical features of the antibody response such as immunity and B cell memory.


Infection and Immunity | 2002

Genomic Approach for Analysis of Surface Proteins in Chlamydia pneumoniae

Silvia Montigiani; Fabiana Falugi; Maria Scarselli; Oretta Finco; Roberto Petracca; Giuliano Galli; Massimo Mariani; Roberto Manetti; Mauro Agnusdei; Roberto Cevenini; Manuela Donati; Renzo Nogarotto; Nathalie Norais; Ignazio Garaguso; Sandra Nuti; Giulietta Saletti; Domenico Rosa; Giulio Ratti; Guido Grandi

ABSTRACT Chlamydia pneumoniae, a human pathogen causing respiratory infections and probably contributing to the development of atherosclerosis and heart disease, is an obligate intracellular parasite which for replication needs to productively interact with and enter human cells. Because of the intrinsic difficulty in working with C. pneumoniae and in the absence of reliable tools for its genetic manipulation, the molecular definition of the chlamydial cell surface is still limited, thus leaving the mechanisms of chlamydial entry largely unknown. In an effort to define the surface protein organization of C. pneumoniae, we have adopted a combined genomic-proteomic approach based on (i) in silico prediction from the available genome sequences of peripherally located proteins, (ii) heterologous expression and purification of selected proteins, (iii) production of mouse immune sera against the recombinant proteins to be used in Western blotting and fluorescence-activated cell sorter (FACS) analyses for the identification of surface antigens, and (iv) mass spectrometry analysis of two-dimensional electrophoresis (2DE) maps of chlamydial protein extracts to confirm the presence of the FACS-positive antigens in the chlamydial cell. Of the 53 FACS-positive sera, 41 recognized a protein species with the expected size on Western blots, and 28 of the 53 antigens shown to be surface-exposed by FACS were identified on 2DE maps of elementary-body extracts. This work represents the first systematic attempt to define surface protein organization in C. pneumoniae.


European Journal of Immunology | 1998

Dynamics of intra‐hepatic lymphocytes in chronic hepatitis C: enrichment for Vα24+ T cells and rapid elimination of effector cells by apoptosis

Sandra Nuti; Domenico Rosa; Nicholas M. Valiante; Giulietta Saletti; Marcello Caratozzolo; Paolo Dellabona; Vincenzo Barnaba; Sergio Abrignani

Chronic viral hepatitis is characterized by a dramatic lymphocyte infiltrate in the liver. Although it is one of the most common chronic inflammatory diseases in humans, little information is available on the functional state of these intra‐hepatic lymphocytes (IHL). To address this issue, we have optimized cytofluorimetric techniques to assess directly ex vivo the functions, dynamics and repertoires of IHL isolated from biopsies of patients with chronic hepatitis C. We estimate that 1 % of the total body lymphocytes infiltrate the inflamed liver and find that, at variance with peripheral blood lymphocytes (PBL) isolated from the same patients, most IHL display an activated phenotype and produce Th1 type lymphokines when stimulated in vitro. Virtually all IHL are found in the G0/G1 state of the cell cycle, while a sizeable percentage of them is undergoing programmed cell death in vivo, as detected by the TUNEL assay performed on freshly isolated cells. In contrast again to PBL from the same patients, IHL show a preferential compartmentalization of NK and TCRγ / δ+ cells, and a remarkable (up to 20‐fold) enrichment for Vα24+ T cells. Together our data suggest that in a liver injured by chronic hepatitis C, most IHL are pro‐inflammatory activated cells which are highly enriched for effectors of innate resistance. These IHL do not undergoclonal expansion in the liver but rather display effector function and die in situ at a high rate, suggesting that maintenance of the IHL pool is dependent on continuous migration from extra‐hepatic sites.


Journal of Immunology | 2004

Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis.

Claudia de Lalla; Grazia Galli; Luca Aldrighetti; R. Romeo; Margherita Mariani; Antonella Monno; Sandra Nuti; M. Colombo; Francesco Callea; Steven A. Porcelli; Paola Panina-Bordignon; Sergio Abrignani; Giulia Casorati; Paolo Dellabona

Invariant (inv)NKT cells are a subset of autoreactive lymphocytes that recognize endogenous lipid ligands presented by CD1d, and are suspected to regulate the host response to cell stress and tissue damage via the prompt production of cytokines. We investigated invNKT cell response during the progression of chronic viral hepatitis caused by hepatitis B or C virus infection, a major human disease characterized by a diffused hepatic necroinflammation with scarring fibrotic reaction, which can progress toward cirrhosis and cancer. Ex vivo frequency and cytokine production were determined in circulating and intrahepatic invNKT cells from controls (healthy subjects or patients with nonviral benign or malignant focal liver damage and minimal inflammatory response) or chronic viral hepatitis patients without cirrhosis, with cirrhosis, or with cirrhosis and hepatocellular carcinoma. invNKT cells increase in chronically infected livers and undergo a substantial modification in their effector functions, consisting in the production of the type 2 profibrotic IL-4 and IL-13 cytokines, which characterizes the progression of hepatic fibrosis to cirrhosis. CD1d, nearly undetectable in noncirrhotic and control livers, is strongly expressed by APCs in cirrhotic ones. Furthermore, in vitro CD1d-dependent activation of invNKT cells from healthy donors elicits IL-4 and IL-13. Together, these findings show that invNKT cells respond to the progressive liver damage caused by chronic hepatitis virus infection, and suggest that these cells, possibly triggered by the recognition of CD1d associated with viral- or stress-induced lipid ligands, contribute to the pathogenesis of cirrhosis by expressing a set of cytokines involved in the progression of fibrosis.


European Journal of Immunology | 2001

Binding of the hepatitis C virus envelope protein E2 to CD81 provides a co‐stimulatory signal for human T cells

Andreas Wack; Elisabetta Soldaini; Chien Te K Tseng; Sandra Nuti; Gary R. Klimpel; Sergio Abrignani

Chronic hepatitis C virus (HCV) infection frequently develops into liver disease and is accompanied by extra‐hepatic autoimmune manifestations. The tetraspanin CD81 is a putative HCV receptor as it binds the E2 envelope glycoprotein of HCV and bona fide HCV particles. Here we show that HCV E2 binding to CD81 on human cells in vitro lowers the threshold for IL‐2 receptor alpha expression and IL‐2 production, resulting in strongly increased T cell proliferation. HCV E2‐induced co‐stimulation also enhances the production of IFN‐γ and IL‐4 and causes increased TCR down‐regulation. This suggests that binding of HCV particles to CD81 on T cells in vivo may lead to activation by otherwise suboptimal stimuli. Therefore, co‐stimulation of autoreactive T cells by HCV may contribute to liver damage and autoimmune phenomena observed in HCV infection.


Blood | 2009

Human plasmacytoid dendritic cells are unresponsive to bacterial stimulation and require a novel type of cooperation with myeloid dendritic cells for maturation

Diego Piccioli; Chiara Sammicheli; Simona Tavarini; Sandra Nuti; Elisabetta Frigimelica; Andrea G. O. Manetti; Annalisa Nuccitelli; Susanna Aprea; Sara Valentini; Erica Borgogni; Andreas Wack; Nicholas M. Valiante

Dendritic cell (DC) populations play unique and essential roles in the detection of pathogens, but information on how different DC types work together is limited. In this study, 2 major DC populations of human blood, myeloid (mDCs) and plasmacytoid (pDCs), were cultured alone or together in the presence of pathogens or their products. We show that pDCs do not respond to whole bacteria when cultured alone, but mature in the presence of mDCs. Using purified stimuli, we dissect this cross-talk and demonstrate that mDCs and pDCs activate each other in response to specific induction of only one of the cell types. When stimuli for one or both populations are limited, they synergize to reach optimal activation. The cross-talk is limited to enhanced antigen presentation by the nonresponsive population with no detectable changes in the quantity and range of cytokines produced. We propose that each population can be a follower or leader in immune responses against pathogen infections, depending on their ability to respond to infectious agents. In addition, our results indicate that pDCs play a secondary role to induce immunity against human bacterial infections, which has implications for more efficient targeting of DC populations with improved vaccines and therapeutics.


European Journal of Immunology | 2003

T cell costimulation by the hepatitis C virus envelope protein E2 binding to CD81 is mediated by Lck

Elisabetta Soldaini; Andreas Wack; Ugo D'Oro; Sandra Nuti; Cristina Ulivieri; Cosima T. Baldari; Sergio Abrignani

Binding of the hepatitis C virus (HCV) envelope protein E2 to CD81 provides a costimulatory signal for human T cells. This phenomenon may play a role in liver damage and autoimmune manifestations associated with HCV infection. Here we show that cross‐linking of CD81 by HCV E2 induced a calcium flux in T cells that depends on Lck since it was blocked by PP1 and absent in Lck‐deficient Jurkat T cells. In wild‐type Jurkat cells, Lck was activated by CD81 cross‐linking, and CD81, like Lck, was found in lipid rafts. Indeed, the integrity of the raft compartment was required for the induction of a calcium flux by E2, since methyl‐β‐cyclodextrin abolished this response. A requirement for TCR/CD3 expression was indicated by the absence of a calcium flux following E2 stimulation of TCR/CD3‐deficient Jurkat cells. CD81 cross‐linking increased and prolonged the anti‐CD3‐induced tyrosine phosphorylation of TCRζ and of other proteins, indicating that the CD81‐mediated signal converges with the TCR/CD3 signaling cascade at its most upstream step. In conclusion, we propose that the costimulatory effects of HCV E2 on T cells depend on CD81 cross‐linking that activates Lck through raft aggregation and thus leads to enhanced TCR signaling.

Collaboration


Dive into the Sandra Nuti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge