Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Olthof is active.

Publication


Featured researches published by Sandra Olthof.


Journal of Experimental Medicine | 2011

Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells

Brad Dykstra; Sandra Olthof; Jaring Schreuder; Martha Ritsema; Gerald de Haan

As shown using clonal assays, the mouse HSC population undergoes quantitative as well as qualitative changes with age, including lineage differentiation, HSC pool size, marrow-homing efficiency, and self-renewal.


Blood | 2009

Repression of BMI1 in normal and leukemic human CD34+ cells impairs self-renewal and induces apoptosis

Aleksandra Rizo; Sandra Olthof; Lina Han; Edo Vellenga; Gerald de Haan; Jan Jacob Schuringa

High expression of BMI1 in acute myeloid leukemia (AML) cells is associated with an unfavorable prognosis. Therefore, the effects of down-modulation of BMI1 in normal and leukemic CD34(+) AML cells were studied using a lentiviral RNA interference approach. We demonstrate that down-modulation of BMI1 in cord blood CD34(+) cells impaired long-term expansion and progenitor-forming capacity, both in cytokine-driven liquid cultures as well as in bone marrow stromal cocultures. In addition, long-term culture-initiating cell frequencies were dramatically decreased upon knockdown of BMI1, indicating an impaired maintenance of stem and progenitor cells. The reduced progenitor and stem cell frequencies were associated with increased expression of p14ARF and p16INK4A and enhanced apoptosis, which coincided with increased levels of intracellular reactive oxygen species and reduced FOXO3A expression. In AML CD34(+) cells, down-modulation of BMI1 impaired long-term expansion, whereby self-renewal capacity was lost, as determined by the loss of replating capacity of the cultures. These phenotypes were also associated with increased expression levels of p14ARF and p16INK4A. Together our data indicate that BMI1 expression is required for maintenance and self-renewal of normal and leukemic stem and progenitor cells, and that expression of BMI1 protects cells against oxidative stress.


Nature Cell Biology | 2013

Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation

Karin Klauke; Višnja Radulović; Mathilde Broekhuis; Erik Zwart; Sandra Olthof; Martha Ritsema; Sophia W.M. Bruggeman; Xudong Wu; Kristian Helin; Leonid Bystrykh; Gerald de Haan

The balance between self-renewal and differentiation of adult stem cells is essential for tissue homeostasis. Here we show that in the haematopoietic system this process is governed by polycomb chromobox (Cbx) proteins. Cbx7 is specifically expressed in haematopoietic stem cells (HSCs), and its overexpression enhances self-renewal and induces leukaemia. This effect is dependent on integration into polycomb repressive complex-1 (PRC1) and requires H3K27me3 binding. In contrast, overexpression of Cbx2, Cbx4 or Cbx8 results in differentiation and exhaustion of HSCs. ChIP-sequencing analysis shows that Cbx7 and Cbx8 share most of their targets; we identified approximately 200 differential targets. Whereas genes targeted by Cbx8 are highly expressed in HSCs and become repressed in progenitors, Cbx7 targets show the opposite expression pattern. Thus, Cbx7 preserves HSC self-renewal by repressing progenitor-specific genes. Taken together, the presence of distinct Cbx proteins confers target selectivity to PRC1 and provides a molecular balance between self-renewal and differentiation of HSCs.


Blood | 2012

Genetic screen identifies microRNA cluster 99b/let-7e/125a as a regulator of primitive hematopoietic cells

Alice Gerrits; Marta A. Walasek; Sandra Olthof; Martha Ritsema; Erik Zwart; Ronald van Os; Leonid V. Bystrykh; Gerald de Haan

Hematopoietic stem/progenitor cell (HSPC) traits differ between genetically distinct mouse strains. For example, DBA/2 mice have a higher HSPC frequency compared with C57BL/6 mice. We performed a genetic screen for micro-RNAs that are differentially expressed between LSK, LS(-)K(+), erythroid and myeloid cells isolated from C57BL/6 and DBA/2 mice. This analysis identified 131 micro-RNAs that were differentially expressed between cell types and 15 that were differentially expressed between mouse strains. Of special interest was an evolutionary conserved miR cluster located on chromosome 17 consisting of miR-99b, let-7e, and miR-125a. All cluster members were most highly expressed in LSKs and down-regulated upon differentiation. In addition, these microRNAs were higher expressed in DBA/2 cells compared with C57BL/6 cells, and thus correlated with HSPC frequency. To functionally characterize these microRNAs, we overexpressed the entire miR-cluster 99b/let-7e/125a and miR-125a alone in BM cells from C57BL/6 mice. Overexpression of the miR-cluster or miR-125a dramatically increased day-35 CAFC activity and caused severe hematopoietic phenotypes upon transplantation. We showed that a single member of the miR-cluster, namely miR-125a, is responsible for the majority of the observed miR-cluster overexpression effects. Finally, we performed genome-wide gene expression arrays and identified candidate target genes through which miR-125a may modulate HSPC fate.


Blood | 2010

BMI1 collaborates with BCR-ABL in leukemic transformation of human CD34 + cells

Aleksandra Rizo; Sarah J. Horton; Sandra Olthof; Bert Dontje; Albertina Ausema; Ronald van Os; Vincent van den Boom; Edo Vellenga; Gerald de Haan; Jan Jacob Schuringa

The major limitation for the development of curative cancer therapies has been an incomplete understanding of the molecular mechanisms driving cancer progression. Human models to study the development and progression of chronic myeloid leukemia (CML) have not been established. Here, we show that BMI1 collaborates with BCR-ABL in inducing a fatal leukemia in nonobese diabetic/severe combined immunodeficiency mice transplanted with transduced human CD34(+) cells within 4-5 months. The leukemias were transplantable into secondary recipients with a shortened latency of 8-12 weeks. Clonal analysis revealed that similar clones initiated leukemia in primary and secondary mice. In vivo, transformation was biased toward a lymphoid blast crisis, and in vitro, myeloid as well as lymphoid long-term, self-renewing cultures could be established. Retroviral introduction of BMI1 in primary chronic-phase CD34(+) cells from CML patients elevated their proliferative capacity and self-renewal properties. Thus, our data identify BMI1 as a potential therapeutic target in CML.


Stem Cells | 2008

Downregulation of Signal Transducer and Activator of Transcription 5 (STAT5) in CD34+ Cells Promotes Megakaryocytic Development, Whereas Activation of STAT5 Drives Erythropoiesis

Sandra Olthof; Szabolcs Fatrai; A. Lyndsay Drayer; Monika R. Tyl; Edo Vellenga; Jan Jacob Schuringa

Although it has been proposed that the common myeloid progenitor gives rise to granulocyte/monocyte progenitors and megakaryocyte/erythroid progenitors (MEP), little is known about molecular switches that determine whether MEPs develop into either erythrocytes or megakaryocytes. We used the thrombopoietin receptor c‐Mpl, as well as the megakaryocytic marker CD41, to optimize progenitor sorting procedures to further subfractionate the MEP (CD34+CD110+CD45RA−) into erythroid progenitors (CD34+CD110+CD45RA−CD41−) and megakaryocytic progenitors (CD34+CD110+CD45RA−CD41+) from peripheral blood. We have identified signal transducer and activator of transcription 5 (STAT5) as a critical denominator that determined lineage commitment between erythroid and megakaryocytic cell fates. Depletion of STAT5 from CD34+ cells by a lentiviral RNAi approach in the presence of thrombopoietin and stem cell factor resulted in an increase in megakaryocytic progenitors (CFU‐Mk), whereas erythroid progenitors (BFU‐E) were decreased. Furthermore, an increase in cells expressing megakaryocytic markers CD41 and CD42b was observed in STAT5 RNAi cells, as was an increase in the percentage of polyploid cells. Reversely, overexpression of activated STAT5A(1*6) mutants severely impaired megakaryocyte development and induced a robust erythroid differentiation. Microarray and quantitative reverse transcription‐polymerase chain reaction analysis revealed changes in expression of a number of genes, including GATA1, which was downmodulated by STAT5 RNAi and upregulated by activated STAT5.


Stem Cells | 2006

Mammalian target of rapamycin is required for thrombopoietin-induced proliferation of megakaryocyte progenitors.

A. Lyndsay Drayer; Sandra Olthof; Edo Vellenga

Thrombopoietin (TPO) is a potent regulator of megakaryopoiesis and stimulates megakaryocyte (MK) progenitor expansion and MK differentiation. In this study, we show that TPO induces activation of the mammalian target of rapamycin (mTOR) signaling pathway, which plays a central role in translational regulation and is required for proliferation of MO7e cells and primary human MK progenitors. Treatment of MO7e cells, human CD34+, and primary MK cells with the mTOR inhibitor rapamycin inhibits TPO‐induced cell cycling by reducing cells in S phase and blocking cells in G0/G1. Rapamycin markedly inhibits the clonogenic growth of MK progenitors with high proliferative capacity but does not reduce the formation of small MK colonies. Addition of rapamycin to MK suspension cultures reduces the number of MK cells, but inhibition of mTOR does not significantly affect expression of glycoproteins IIb/IIIa (CD41) and glycoprotein Ib (CD42), nuclear polyploidization levels, cell size, or cell survival. The downstream effectors of mTOR, p70 S6 kinase (S6K) and 4E‐binding protein 1 (4E‐BP1), are phosphorylated by TPO in a rapamycin‐ and LY294002‐sensitive manner. Part of the effect of the phosphatidyl inositol 3‐kinase pathway in regulating megakaryopoiesis may be mediated by the mTOR/S6K/4E‐BP1 pathway. In conclusion, these data demonstrate that the mTOR pathway is activated by TPO and plays a critical role in regulating proliferation of MK progenitors, without affecting differentiation or cell survival.


Journal of Biological Chemistry | 2008

Plant Sterols Cause Macrothrombocytopenia in a Mouse Model of Sitosterolemia

Janine K. Kruit; A. Lyndsay Drayer; Vincent W. Bloks; Nel R. Blom; Sandra Olthof; Pieter J. J. Sauer; Gerald de Haan; Ido P. Kema; Edo Vellenga; Folkert Kuipers

Mutations in either ABCG5 or ABCG8 cause sitosterolemia, an inborn error of metabolism characterized by high plasma plant sterol concentrations. Recently, macrothrombocytopenia was described in a number of sitosterolemia patients, linking hematological dysfunction to disturbed sterol metabolism. Here, we demonstrate that macrothrombocytopenia is an intrinsic feature of murine sitosterolemia. Abcg5-deficient (Abcg5-/-) mice showed a 68% reduction in platelet count, and platelets were enlarged compared with wild-type controls. Macrothrombocytopenia was not due to decreased numbers of megakaryocytes or their progenitors, but defective megakaryocyte development with deterioration of the demarcation membrane system was evident. Lethally irradiated wild-type mice transplanted with bone marrow from Abcg5-/- mice displayed normal platelets, whereas Abcg5-/- mice transplanted with wild-type bone marrow still showed macrothrombocytopenia. Treatment with the sterol absorption inhibitor ezetimibe rapidly reversed macrothrombocytopenia in Abcg5-/- mice concomitant with a strong decrease in plasma plant sterols. Thus, accumulation of plant sterols is responsible for development of macrothrombocytopenia in sitosterolemia, and blocking intestinal plant sterol absorption provides an effective means of treatment.


Human Genetics | 2006

MUTYH and the mismatch repair system : partners in crime?

Renée C. Niessen; Rolf H. Sijmons; J. Ou; Sandra Olthof; Jan Osinga; Marjolijn J. L. Ligtenberg; Frans B. L. Hogervorst; Marjan M. Weiss; Carli M. J. Tops; Frederik J. Hes; Geertruida H. de Bock; Charles H.C.M. Buys; Jan H. Kleibeuker; Robert M. W. Hofstra

Biallelic germline mutations of MUTYH—a gene encoding a base excision repair protein—are associated with an increased susceptibility of colorectal cancer. Whether monoallelic MUTYH mutations also increase cancer risk is not yet clear, although there is some evidence suggesting a slight increase of risk. As the MUTYH protein interacts with the mismatch repair (MMR) system, we hypothesised that the combination of a monoallelic MUTYH mutation with an MMR gene mutation increases cancer risk. We therefore investigated the prevalence of monoallelic MUTYH mutations in carriers of a germline MMR mutation: 40 carriers of a truncating mutation (group I) and 36 of a missense mutation (group II). These patients had been diagnosed with either colorectal or endometrial cancer. We compared their MUTYH mutation frequencies with those observed in a group of 134 Dutch colorectal and endometrial cancer patients without an MMR gene mutation (0.7%) and those reported for Caucasian controls (1.5%). In group I one monoallelic MUTYH mutation was found (2.5%). In group II five monoallelic germline MUTYH mutations were found (14%), four of them in MSH6 missense mutation carriers (20%). Of all patients with an MMR gene mutation, only those with a missense mutation showed a significantly higher frequency of (monoallelic) MUTYH mutations than the Dutch cancer patients without MMR gene mutations (P=0.002) and the published controls (P=0.001). These results warrant further study to test the hypothesis of mutations in MMR genes (in particular MSH6) and MUTYH acting together to increase cancer risk.


Blood | 2012

The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation

Marta A. Walasek; Leonid Bystrykh; Vincent van den Boom; Sandra Olthof; Albertina Ausema; Martha Ritsema; Gerwin Huls; Gerald de Haan; Ronald van Os

Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecules can serve as tools to manipulate cell fate decisions. Here, we tested 2 small molecules, valproic acid (VPA) and lithium (Li), to inhibit differentiation. HSPCs exposed to VPA and Li during differentiation-inducing culture preserved an immature cell phenotype, provided radioprotection to lethally irradiated recipients, and enhanced in vivo repopulating potential. Anti-differentiation effects of VPA and Li were observed also at the level of committed progenitors, where VPA re-activated replating activity of common myeloid progenitor and granulocyte macrophage progenitor cells. Furthermore, VPA and Li synergistically preserved expression of stem cell-related genes and repressed genes involved in differentiation. Target genes were collectively co-regulated during normal hematopoietic differentiation. In addition, transcription factor networks were identified as possible primary regulators. Our results show that the combination of VPA and Li potently delays differentiation at the biologic and molecular levels and provide evidence to suggest that combinatorial screening of chemical compounds may uncover possible additive/synergistic effects to modulate stem cell fate decisions.

Collaboration


Dive into the Sandra Olthof's collaboration.

Top Co-Authors

Avatar

Gerald de Haan

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald van Os

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Marta A. Walasek

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Brad Dykstra

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Aleksandra Rizo

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge