Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Ormenese is active.

Publication


Featured researches published by Sandra Ormenese.


Cell | 2009

Elongator Controls the Migration and Differentiation of Cortical Neurons through Acetylation of α-Tubulin

Catherine Creppe; Lina Malinouskaya; Marie-Laure Volvert; Magali Gillard; Pierre Close; Olivier Malaise; Sophie Laguesse; Isabelle Cornez; Souad Rahmouni; Sandra Ormenese; Shibeshih Belachew; Brigitte Malgrange; Jean-Paul Chapelle; Ulrich Siebenlist; Gustave Moonen; Alain Chariot; Laurent Nguyen

The generation of cortical projection neurons relies on the coordination of radial migration with branching. Here, we report that the multisubunit histone acetyltransferase Elongator complex, which contributes to transcript elongation, also regulates the maturation of projection neurons. Indeed, silencing of its scaffold (Elp1) or catalytic subunit (Elp3) cell-autonomously delays the migration and impairs the branching of projection neurons. Strikingly, neurons defective in Elongator show reduced levels of acetylated alpha-tubulin. Reduction of alpha-tubulin acetylation via expression of a nonacetylatable alpha-tubulin mutant leads to comparable defects in cortical neurons and suggests that alpha-tubulin is a target of Elp3. This is further supported by the demonstration that Elp3 promotes acetylation and counteracts HDAC6-mediated deacetylation of this substrate in vitro. Our results uncover alpha-tubulin as a target of the Elongator complex and suggest that a tight regulation of its acetylation underlies the maturation of cortical projection neurons.


The EMBO Journal | 2002

Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor.

Lieven De Veylder; Tom Beeckman; Gerrit T.S. Beemster; Janice de Almeida Engler; Sandra Ormenese; Sara Maes; Mirande Naudts; Els Van Der Schueren; Annie Jacqmard; Gilbert Engler; Dirk Inzé

New plant cells arise at the meristems, where they divide a few times before they leave the cell‐cycle program and start to differentiate. Here we show that the E2Fa–DPa transcription factor of Arabidopsis thaliana is a key regulator determining the proliferative status of plant cells. Ectopic expression of E2Fa induced sustained cell proliferation in normally differentiated cotyledon and hypocotyl cells. The phenotype was enhanced strongly by the co‐expression of E2Fa with its dimerization partner, DPa. In endoreduplicating cells, E2Fa–DPa also caused extra DNA replication that was correlated with transcriptional induction of S phase genes. Because E2Fa–DPa transgenic plants arrested early in development, we argue that controlled exit of the cell cycle is a prerequisite for normal plant development.


Plant Journal | 2011

Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF

Maria D'Aloia; Delphine Bonhomme; Frédéric Bouché; Karim Tamseddak; Sandra Ormenese; Stefano Torti; George Coupland; Claire Périlleux

Cytokinins are involved in many aspects of plant growth and development, and physiological evidence also indicates that they have a role in floral transition. In order to integrate these phytohormones into the current knowledge of genetically defined molecular pathways to flowering, we performed exogenous treatments of adult wild type and mutant Arabidopsis plants, and analysed the expression of candidate genes. We used a hydroponic system that enables synchronous growth and flowering of Arabidopsis, and allows the precise application of chemicals to the roots for defined periods of time. We show that the application of N⁶-benzylaminopurine (BAP) promotes flowering of plants grown in non-inductive short days. The response to cytokinin treatment does not require FLOWERING LOCUS T (FT), but activates its paralogue TWIN SISTER OF FT (TSF), as well as FD, which encodes a partner protein of TSF, and the downstream gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Treatment of selected mutants confirmed that TSF and SOC1 are necessary for the flowering response to BAP, whereas the activation cascade might partially act independently of FD. These experiments provide a mechanistic basis for the role of cytokinins in flowering, and demonstrate that the redundant genes FT and TSF are differently regulated by distinct floral-inducing signals.


Journal of Cell Science | 2003

Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation

Kobe Vlieghe; Marnik Vuylsteke; Kobe Florquin; Stephane Rombauts; Sara Maes; Sandra Ormenese; Paul Van Hummelen; Yves Van de Peer; Dirk Inzé; Lieven De Veylder

Previously we have shown that overexpression of the heterodimeric E2Fa-DPa transcription factor in Arabidopsis thaliana results in ectopic cell division, increased endoreduplication, and an early arrest in development. To gain a better insight into the phenotypic behavior of E2Fa-DPa transgenic plants and to identify E2Fa-DPa target genes, a transcriptomic microarray analysis was performed. Out of 4,390 unique genes, a total of 188 had a twofold or more up- (84) or down-regulated (104) expression level in E2Fa-DPa transgenic plants compared to wild-type lines. Detailed promoter analysis allowed the identification of novel E2Fa-DPa target genes, mainly involved in DNA replication. Secondarily induced genes encoded proteins involved in cell wall biosynthesis, transcription and signal transduction or had an unknown function. A large number of metabolic genes were modified as well, among which, surprisingly, many genes were involved in nitrate assimilation. Our data suggest that the growth arrest observed upon E2Fa-DPa overexpression results at least partly from a nitrogen drain to the nucleotide synthesis pathway, causing decreased synthesis of other nitrogen compounds, such as amino acids and storage proteins.


Journal of Biological Chemistry | 2008

A Temperature-sensitive Mutation in the Arabidopsis thaliana Phosphomannomutase Gene Disrupts Protein Glycosylation and Triggers Cell Death

Frank A. Hoeberichts; Elke Vaeck; Guy Kiddle; Emmy Coppens; Brigitte van de Cotte; Antoine Roger Adamantidis; Sandra Ormenese; Christine H. Foyer; Marc Zabeau; Dirk Inzé; Claire Périlleux; Frank Van Breusegem; Marnik Vuylsteke

Eukaryotic phosphomannomutases (PMMs) catalyze the interconversion of mannose 6-phosphate to mannose 1-phosphate and are essential to the biosynthesis of GDP-mannose. As such, plant PMMs are involved in ascorbic acid (AsA) biosynthesis and N-glycosylation. We report on the conditional phenotype of the temperature-sensitive Arabidopsis thaliana pmm-12 mutant. Mutant seedlings were phenotypically similar to wild type seedlings when grown at 16–18 °C but died within several days after transfer to 28 °C. This phenotype was observed throughout both vegetative and reproductive development. Protein extracts derived from pmm-12 plants had lower PMM protein and enzyme activity levels. In vitro biochemical analysis of recombinant proteins showed that the mutant PMM protein was compromised in its catalytic efficiency (Kcat/Km). Despite significantly decreased AsA levels in pmm-12 plants, AsA deficiency could not account for the observed phenotype. Since, at restrictive temperature, total glycoprotein patterns were altered and glycosylation of protein-disulfide isomerase was perturbed, we propose that a deficiency in protein glycosylation is responsible for the observed cell death phenotype.


Planta | 2000

The frequency of plasmodesmata increases early in the whole shoot apical meristem of Sinapis alba L. during floral transition

Sandra Ormenese; Andrée Havelange; Roger Deltour; Georges Bernier

Abstract. The frequency of plasmodesmata increases in the shoot apical meristem of plants of Sinapis alba L. induced to flower by exposure to a single long day. This increase is observed within all cell layers (L1, L2, L3) as well as at the interfaces between these layers, and it occurs in both the central and peripheral zones of the shoot apical meristem. The extra plasmodesmata are formed only transiently, from 28 to 48 h after the start of the long day, and acropetally since they are detectable in L3 4 h before they are seen in L1 and L2. These observations indicate that (i) in the Sinapis shoot apical meristem at floral transition, there is an unfolding of a single field with increased plasmodesmatal connectivity, and (ii) this event is an early effect of the arrival at this meristem of the floral stimulus of leaf origin. Since (i) the wave of increased frequency of plasmodesmata is 12 h later than the wave of increased mitotic frequency (A. Jacqmard et al. 1998, Plant cell proliferation and its regulation in growth and development, pp. 67–78; Wiley), and (ii) the increase in frequency of plasmodesmata is observed in all cell walls, including in walls not deriving from recent divisions (periclinal walls separating the cell layers), it is concluded that the extra plasmodesmata seen at floral transition do not arise in the forming cell plate during mitosis and are thus of secondary origin.


Blood | 2012

Matrix metalloproteinase-2 governs lymphatic vessel formation as an interstitial collagenase

Benoît Detry; Charlotte Erpicum; Jenny Paupert; Silvia Blacher; Catherine Maillard; Françoise Bruyère; Hélène Pendeville; Thibault Remacle; Vincent Lambert; Cédric Balsat; Sandra Ormenese; Françoise Lamaye; Els Janssens; Lieve Moons; Didier Cataldo; Frédérick Kridelka; Peter Carmeliet; Marc Thiry; Jean-Michel Foidart; Ingrid Struman; Agnès Noël

Lymphatic dysfunctions are associated with several human diseases, including lymphedema and metastatic spread of cancer. Although it is well recognized that lymphatic capillaries attach directly to interstitial matrix mainly composed of fibrillar type I collagen, the interactions occurring between lymphatics and their surrounding matrix have been overlooked. In this study, we demonstrate how matrix metalloproteinase (MMP)-2 drives lymphatic morphogenesis through Mmp2-gene ablation in mice, mmp2 knockdown in zebrafish and in 3D-culture systems, and through MMP2 inhibition. In all models used in vivo (3 murine models and thoracic duct development in zebrafish) and in vitro (lymphatic ring and spheroid assays), MMP2 blockage or down-regulation leads to reduced lymphangiogenesis or altered vessel branching. Our data show that lymphatic endothelial cell (LEC) migration through collagen fibers is affected by physical matrix constraints (matrix composition, density, and cross-linking). Transmission electron microscopy and confocal reflection microscopy using DQ-collagen highlight the contribution of MMP2 to mesenchymal-like migration of LECs associated with collagen fiber remodeling. Our findings provide new mechanistic insight into how LECs negotiate an interstitial type I collagen barrier and reveal an unexpected MMP2-driven collagenolytic pathway for lymphatic vessel formation and morphogenesis.


Planta | 2002

The shoot apical meristem of Sinapis alba L. expands its central symplasmic field during the floral transition.

Sandra Ormenese; Andrée Havelange; Georges Bernier; C. van der Schoot

Abstract. The shoot apical meristem (SAM) is functionally subdivided into zones with distinct tasks. During vegetative growth the peripheral zone of the meristem gives rise to leaf primordia that develop into dorsiventral leaves under the influence of signals from the central zone. During the floral transition the function of the SAM is altered and its peripheral zone starts to form floral structures in a specific pattern. This requires alterations in the signal networks that coordinate the activities of the peripheral and central zone of the SAM. These signal networks are partly housed in the symplasmic space of the SAM. Dye-coupling experiments demonstrate that in the superficial layer of the Sinapis alba meristem this space is radially subdivided. The cells of the central zone are coupled into a symplasmic field, which is shielded from the peripheral zone by the positional closing of plasmodesmata. In the vegetative meristems, most of these central symplasmic fields have a triangular geometry and are relatively small in size. Plants that are induced to flower by exposure to a single long day alter the geometry as well as the size of their central symplasmic field. After two subsequent days under short photoperiod the central symplasmic fields exhibit a circular form. Simultaneously, their size strongly increases both in an absolute sense and relative to the enlarging meristem. The geometric change in the fields is hypothesized to be due to recruitment of extra initial cells, required to support the increase in phyllotactic complexity. The proportional increase in field size is interpreted as an adjustment in the balance between the central and peripheral zone of the SAM, accompanying the shift from leaf production to flower formation.


Molecular and Cellular Biology | 2011

Induction of the Alternative NF-κB Pathway by Lymphotoxin αβ (LTαβ) Relies on Internalization of LTβ Receptor

Corinne Ganeff; Caroline Remouchamps; Layla Boutaffala; Cécile Bénézech; Géraldine Galopin; Sarah Vandepaer; Fabrice Bouillenne; Sandra Ormenese; Alain Chariot; Pascal Schneider; Jorge Caamano; Jacques Piette; Emmanuel Dejardin

ABSTRACT Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB.


PLOS ONE | 2014

Cell invasion in the spheroid sprouting assay: a spatial organisation analysis adaptable to cell behaviour.

Silvia Blacher; Charlotte Erpicum; Bénédicte Lenoir; Jenny Paupert; Gustavo Moraes; Sandra Ormenese; Eric Bullinger; Agnès Noël

The endothelial cell spheroid assay provides a suitable in vitro model to study (lymph) angiogenesis and test pro- and anti-(lymph) angiogenic factors or drugs. Usually, the extent of cell invasion, observed through optical microscopy, is measured. The present study proposes the spatial distribution of migrated cells as a new descriptor of the (lymph) angiogenic response. The utility of this novel method rests with its capacity to locally characterise spheroid structure, allowing not only the investigation of single and collective cell invasion but also the evolution of the spheroid core itself. Moreover, the proposed method can be applied to 2D-projected spheroid images obtained by optical microscopy, as well as to 3D images acquired by confocal microscopy. To validate the proposed methodology, endothelial cell invasion was evaluated under different experimental conditions. The results were compared with widely used global parameters. The comparison shows that our method prevents local spheroid modifications from being overlooked and leading to the possible misinterpretation of results.

Collaboration


Dive into the Sandra Ormenese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge