Sandra Peiró
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Peiró.
Molecular and Cellular Biology | 2008
Nicolás Herranz; Diego Pasini; Víctor M. Díaz; Clara Francí; Arantxa Gutierrez; Natàlia Dave; Maria Escrivà; Inma Hernandez-Muñoz; Luciano Di Croce; Kristian Helin; Antonio García de Herreros; Sandra Peiró
ABSTRACT The transcriptional factor Snail1 is a repressor of E-cadherin (CDH1) gene expression essential for triggering epithelial-mesenchymal transition. Snail1 represses CDH1, directly binding its promoter and inducing the synthesis of the Zeb1 repressor. In this article, we show that repression of CDH1 by Snail1, but not by Zeb1, is dependent on the activity of Polycomb repressive complex 2 (PRC2). Embryonic stem (ES) cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumor cells, interference of PRC2 activity prevents the ability of Snail1 to downregulate CDH1 and partially derepresses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to the CDH1 promoter and the trimethylation of lysine 27 in histone H3. Moreover, Snail1 interacts with Suz12 and Ezh2, as shown by coimmunoprecipitation experiments. In conclusion, these results demonstrate that Snail1 recruits PRC2 to the CDH1 promoter and requires the activity of this complex to repress E-cadherin expression.
Oncogene | 2004
Maria José Barberà; Isabel Puig; David Domı́nguez; Sylvia Julien-Grille; Sandra Peiró; Josep Baulida; Clara Francí; Shoukat Dedhar; Lionel Larue; Antonio García de Herreros
Expression of Snail transcriptional factor is a determinant in the acquisition of a mesenchymal phenotype by epithelial tumor cells. However, the regulation of the transcription of this gene is still unknown. We describe here the characterization of a human SNAIL promoter that contains the initiation of transcription and regulates the expression of this gene in tumor cells. This promoter was activated in cell lines in response to agents that induce Snail transcription and the mesenchymal phenotype, as addition of the phorbol ester PMA or overexpression of integrin-linked kinase (ILK) or oncogenes such as Ha-ras or v-Akt. Although other regions of the promoter were required for a complete stimulation by Akt or ILK, a minimal fragment (−78/+59) was sufficient to maintain the mesenchymal specificity. Activity of this minimal promoter and SNAIL RNA levels were dependent on ERK signaling pathway. NFκB/p65 also stimulated SNAIL transcription through a region located immediately upstream the minimal promoter, between −194 and −78. These results indicate that Snail transcription is driven by signaling pathways known to induce epithelial to mesenchymal transition, reinforcing the role of Snail in this process.
Nature Medicine | 2004
Héctor G. Pálmer; María Jesús Larriba; José Miguel López García; Paloma Ordóñez-Morán; Cristina Peña; Sandra Peiró; Isabel Puig; Rufo Rodríguez; Ricardo de la Fuente; Antonio Bernad; Marina Pollán; Félix Bonilla; Carlos Gamallo; Antonio García de Herreros; Alberto Muñoz
Several non-hypercalcemic analogs of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) show antitumor activity in a subset of cancer patients. High vitamin D receptor (VDR) expression, which is associated with good prognosis but is lost during tumor progression. We show that the SNAIL transcription factor represses VDR gene expression in human colon cancer cells and blocks the antitumor action of EB1089, a 1,25(OH)2D3 analog, in xenografted mice. In human colon cancers, elevated SNAIL expression correlates with downregulation of VDR.
Journal of Mammary Gland Biology and Neoplasia | 2010
Antonio García de Herreros; Sandra Peiró; Mayssaa Nassour; Pierre Savagner
Since its initial description, the interconversion between epithelial and mesenchymal cells (designed as epithelial-mesenchymal or mesenchymal-epithelial transition, EMT or MET, respectively) has received special attention since it provides epithelial cells with migratory features. Different studies using cell lines have identified cytokines, intercellular signaling elements and transcriptional factors capable of regulating this process. Particularly, the identification of Snail family members as key effectors of EMT has opened new ways for the study of this cellular process. In this article we discuss the molecular pathways that control EMT, showing a very tight and interdependent regulation. We also analyze the contribution of EMT and Snail genes in the process of tumorigenesis using the mammary gland as cellular model.
Molecular and Cellular Biology | 2008
Maria Escrivà; Sandra Peiró; Nicolás Herranz; Patricia Villagrasa; Natàlia Dave; Bàrbara Montserrat-Sentís; Stephen A. Murray; Clara Francí; Thomas Gridley; Ismo Virtanen; Antonio García de Herreros
ABSTRACT The product of the Snail1 gene is a transcriptional repressor required for triggering the epithelial-to-mesenchymal transition. Furthermore, ectopic expression of Snail1 in epithelial cells promotes resistance to apoptosis. In this study, we demonstrate that this resistance to γ radiation-induced apoptosis caused by Snail1 is associated with the inhibition of PTEN phosphatase. In MDCK cells, mRNA levels of the p53 target gene PTEN are induced after γ radiation; the transfection of Snail1 prevents this up-regulation. Decreased mRNA levels of PTEN were also detected in RWP-1 cells after the ectopic expression of this transcriptional factor. Snail1 represses and associates to the PTEN promoter as detected both by the electrophoretic mobility shift assay and chromatin immunoprecipitation experiments performed with either endogenous or ectopic Snail1. The binding of Snail1 to the PTEN promoter increases after γ radiation, correlating with the stabilization of Snail1 protein, and prevents the association of p53 to the PTEN promoter. These results stress the critical role of Snail1 in the control of apoptosis and demonstrate the regulation of PTEN phosphatase by this transcriptional repressor.
Nucleic Acids Research | 2006
Sandra Peiró; Maria Escrivà; Isabel Puig; Maria José Barberà; Natàlia Dave; Nicolás Herranz; María Jesús Larriba; Minna Takkunen; Clara Francí; Alberto Muñoz; Ismo Virtanen; Josep Baulida; Antonio García de Herreros
The product of Snail1 gene is a transcriptional repressor of E-cadherin expression and an inductor of the epithelial–mesenchymal transition in several epithelial tumour cell lines. Transcription of Snail1 is induced when epithelial cells are forced to acquire a mesenchymal phenotype. In this work we demonstrate that Snail1 protein limits its own expression: Snail1 binds to an E-box present in its promoter (at −146 with respect to the transcription start) and represses its activity. Therefore, mutation of the E-box increases Snail1 transcription in epithelial and mesenchymal cells. Evidence of binding of ectopic or endogenous Snail1 to its own promoter was obtained by chromatin immunoprecipitation (ChIP) experiments. Studies performed expressing different forms of Snail1 under the control of its own promoter demonstrate that disruption of the regulatory loop increases the cellular levels of Snail protein. These results indicate that expression of Snail1 gene can be regulated by its product and evidence the existence of a fine-tuning feed-back mechanism of regulation of Snail1 transcription.
Journal of Cell Science | 2008
Guiomar Solanas; Montserrat Porta-de-la-Riva; Cristina Agustí; David Casagolda; Francisco Sánchez-Aguilera; María Jesús Larriba; Ferran Pons; Sandra Peiró; Maria Escrivà; Alberto Muñoz; Mireia Duñach; Antonio García de Herreros; Josep Baulida
E-cadherin and its transcriptional repressor Snail1 (Snai1) are two factors that control epithelial phenotype. Expression of Snail1 promotes the conversion of epithelial cells to mesenchymal cells, and occurs concomitantly with the downregulation of E-cadherin and the upregulation of expression of mesenchymal genes such as those encoding fibronectin and LEF1. We studied the molecular mechanism controlling the expression of these genes in mesenchymal cells. Forced expression of E-cadherin strongly downregulated fibronectin and LEF1 RNA levels, indicating that E-cadherin-sensitive factors are involved in the transcription of these genes. E-cadherin overexpression decreased the transcriptional activity of the fibronectin promoter and reduced the interaction of β-catenin and NF-κB with this promoter. Similar to β-catenin, NF-κB was found, by co-immunoprecipitation and pull-down assays, to be associated with E-cadherin and other cell-adhesion components. Interaction of the NF-κB p65 subunit with E-cadherin or β-catenin was reduced when adherens junctions were disrupted by K-ras overexpression or by E-cadherin depletion using siRNA. These conditions did not affect the association of p65 with the NF-κB inhibitor IκBα. The functional significance of these results was stressed by the stimulation of NF-κB transcriptional activity, both basal and TNF-α-stimulated, induced by an E-cadherin siRNA. Therefore, these results demonstrate that E-cadherin not only controls the transcriptional activity of β-catenin but also that of NF-κB. They indicate too that binding of this latter factor to the adherens junctional complex prevents the transcription of mesenchymal genes.
Molecular Cell | 2012
Nicolás Herranz; Natàlia Dave; Alba Millanes-Romero; Lluis Morey; Víctor M. Díaz; Víctor A. Lórenz-Fonfría; Ricardo Gutiérrez-Gallego; Célia Jeronimo; Luciano Di Croce; Antonio García de Herreros; Sandra Peiró
Methylation of lysine 4 (K4) within histone H3 has been linked to active transcription and is removed by LSD1 and the JmjC domain-containing proteins by amino-oxidation or hydroxylation, respectively. Here, we describe the deamination catalyzed by Lysyl oxidase-like 2 protein (LOXL2) as an unconventional chemical mechanism for H3K4 modification. Infrared spectroscopy and mass spectrometry analyses demonstrated that recombinant LOXL2 specifically deaminates trimethylated H3K4. Moreover, LOXL2 activity is linked with the transcriptional control of CDH1 gene by regulating H3K4me3 deamination. These results reveal another H3 modification and provide a different mechanism for H3K4 modification.
Experimental Cell Research | 2008
Luke S. Wanami; Hsin-Ying Chen; Sandra Peiró; Antonio García de Herreros; Robin E. Bachelder
The E-cadherin transcriptional repressor Snail is a prognostic marker for metastatic breast carcinoma, as well as a critical determinant of tumor growth and recurrence. We define a non-angiogenic, autocrine function for the vascular endothelial growth factor-A (VEGF-A) in regulating Snail expression in breast tumor cells. The transfection of well-differentiated breast tumor cells with VEGF-A increases Snail mRNA and protein levels, resulting in reduced E-cadherin expression. Conversely, reducing endogenous VEGF-A expression in poorly differentiated breast tumor cells by siRNA transfection decreases Snail levels. Our studies demonstrate that VEGF and the VEGF receptor Neuropilin-1 increase Snail expression by suppressing the Glycogen Synthase Kinase-3 (GSK-3), an established inhibitor of Snail transcription and protein stability. The VEGF-A neutralizing antibody Avastin was recently approved by the FDA for the treatment of metastatic breast cancer. We present the provocative finding that beyond its anti-angiogenic activity, Avastin can reduce Snail expression in breast tumor cells. Collectively, this work describes a novel autocrine function for VEGF in breast tumor cells in driving the expression of Snail, a breast tumor progression factor. Based on our demonstration that Avastin reduces Snail expression in breast tumor cells, we propose that the treatment of early stage breast cancer patients with Avastin may impede tumor progression.
Molecular Cell | 2013
Alba Millanes-Romero; Nicolás Herranz; Valentina Perrera; Ane Iturbide; Jordina Loubat-Casanovas; Jesús Gil; Thomas Jenuwein; Antonio García de Herreros; Sandra Peiró
Although heterochromatin is enriched with repressive traits, it is also actively transcribed, giving rise to large amounts of noncoding RNAs. Although these RNAs are responsible for the formation and maintenance of heterochromatin, little is known about how their transcription is regulated. Here, we show that the Snail1 transcription factor represses mouse pericentromeric transcription, acting through the H3K4 deaminase LOXL2. Since Snail1 plays a key role in the epithelial-to-mesenchymal transition (EMT), we analyzed the regulation of heterochromatin transcription in this process. At the onset of EMT, one of the major structural heterochromatin proteins, HP1α, is transiently released from heterochromatin foci in a Snail1/LOXL2-dependent manner, concomitantly with a downregulation of major satellite transcription. Moreover, preventing the downregulation of major satellite transcripts compromised the migratory and invasive behavior of mesenchymal cells. We propose that Snail1 regulates heterochromatin transcription through LOXL2, thus creating the favorable transcriptional state necessary for completing EMT.