Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Pinho is active.

Publication


Featured researches published by Sandra Pinho.


Nature | 2013

Arteriolar niches maintain haematopoietic stem cell quiescence

Yuya Kunisaki; Ingmar Bruns; Christoph Scheiermann; Jalal Ahmed; Sandra Pinho; Dachuan Zhang; Toshihide Mizoguchi; Qiaozhi Wei; Daniel Lucas; Keisuke Ito; Jessica C. Mar; Aviv Bergman; Paul S. Frenette

Cell cycle quiescence is a critical feature contributing to haematopoietic stem cell (HSC) maintenance. Although various candidate stromal cells have been identified as potential HSC niches, the spatial localization of quiescent HSCs in the bone marrow remains unclear. Here, using a novel approach that combines whole-mount confocal immunofluorescence imaging techniques and computational modelling to analyse significant three-dimensional associations in the mouse bone marrow among vascular structures, stromal cells and HSCs, we show that quiescent HSCs associate specifically with small arterioles that are preferentially found in endosteal bone marrow. These arterioles are ensheathed exclusively by rare NG2 (also known as CSPG4)+ pericytes, distinct from sinusoid-associated leptin receptor (LEPR)+ cells. Pharmacological or genetic activation of the HSC cell cycle alters the distribution of HSCs from NG2+ periarteriolar niches to LEPR+ perisinusoidal niches. Conditional depletion of NG2+ cells induces HSC cycling and reduces functional long-term repopulating HSCs in the bone marrow. These results thus indicate that arteriolar niches are indispensable for maintaining HSC quiescence.


Genes & Development | 2009

Senescence impairs successful reprogramming to pluripotent stem cells

Ana Banito; Sheikh Tamir Rashid; Juan Carlos Acosta; Si De Li; Carlos Filipe Pereira; Imbisaat Geti; Sandra Pinho; José C.R. Silva; Véronique Azuara; Martin J. Walsh; Ludovic Vallier; Jesús Gil

Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by overexpressing combinations of factors such as Oct4, Sox2, Klf4, and c-Myc. Reprogramming is slow and stochastic, suggesting the existence of barriers limiting its efficiency. Here we identify senescence as one such barrier. Expression of the four reprogramming factors triggers senescence by up-regulating p53, p16(INK4a), and p21(CIP1). Induction of DNA damage response and chromatin remodeling of the INK4a/ARF locus are two of the mechanisms behind senescence induction. Crucially, ablation of different senescence effectors improves the efficiency of reprogramming, suggesting novel strategies for maximizing the generation of iPS cells.


Annual Review of Immunology | 2013

Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for Regenerative Medicine

Paul S. Frenette; Sandra Pinho; Daniel Lucas; Christoph Scheiermann

Mesenchymal stem cells (MSCs) are self-renewing precursor cells that can differentiate into bone, fat, cartilage, and stromal cells of the bone marrow. Recent studies suggest that MSCs themselves are critical for forming a niche that maintains hematopoietic stem cells (HSCs). The ease by which human MSC-like and stromal progenitor cells can be isolated from the bone marrow and other tissues has led to the rapid development of clinical investigations exploring their anti-inflammatory properties, tissue preservation capabilities, and regenerative potential. However, the identity of genuine MSCs and their specific contributions to these various beneficial effects have remained enigmatic. In this article, we examine the definition of MSCs and discuss the importance of rigorously characterizing their stem cell activity. We review their role and that of other putative niche constituents in the regulation of bone marrow HSCs. Additionally, how MSCs and their stromal progeny alter immune function is discussed, as well as potential therapeutic implications.


Journal of Experimental Medicine | 2013

PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion

Sandra Pinho; Julie Lacombe; Maher Hanoun; Toshihide Mizoguchi; Ingmar Bruns; Yuya Kunisaki; Paul S. Frenette

A subset of human Nestin+ mesenchymal stem cells expresses PDGFRα and CD51, and these markers can be used for prospective isolation of these cells.


Nature Medicine | 2014

Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion

Ingmar Bruns; Daniel Lucas; Sandra Pinho; Jalal Ahmed; Michele P. Lambert; Yuya Kunisaki; Christoph Scheiermann; Lauren Schiff; Mortimer Poncz; Aviv Bergman; Paul S. Frenette

In the bone marrow, hematopoietic stem cells (HSCs) lodge in specialized microenvironments that tightly control the proliferative state of HSCs to adapt to the varying needs for replenishment of blood cells while also preventing HSC exhaustion. All putative niche cells suggested thus far have a nonhematopoietic origin. Thus, it remains unclear how feedback from mature cells is conveyed to HSCs to adjust their proliferation. Here we show that megakaryocytes (MKs) can directly regulate HSC pool size in mice. Three-dimensional whole-mount imaging revealed that endogenous HSCs are frequently located adjacent to MKs in a nonrandom fashion. Selective in vivo depletion of MKs resulted in specific loss of HSC quiescence and led to a marked expansion of functional HSCs. Gene expression analyses revealed that MKs are the source of chemokine C-X-C motif ligand 4 (CXCL4, also named platelet factor 4 or PF4) in the bone marrow, and we found that CXCL4 regulates HSC cell cycle activity. CXCL4 injection into mice resulted in a reduced number of HSCs because of their increased quiescence. By contrast, Cxcl4−/− mice exhibited an increased number of HSCs and increased HSC proliferation. Combined use of whole-mount imaging and computational modeling was highly suggestive of a megakaryocytic niche capable of independently influencing HSC maintenance by regulating quiescence. These results indicate that a terminally differentiated cell type derived from HSCs contributes to the HSC niche, directly regulating HSC behavior.


Nature Medicine | 2013

CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress

Andrew Chow; Matthew Huggins; Jalal Ahmed; Daigo Hashimoto; Daniel Lucas; Yuya Kunisaki; Sandra Pinho; Marylene Leboeuf; Clara Noizat; Nico van Rooijen; Masato Tanaka; Zhizhuang Joe Zhao; Aviv Bergman; Miriam Merad; Paul S. Frenette

The role of macrophages in erythropoiesis was suggested several decades ago with the description of “erythroblastic islands” in the bone marrow (BM) composed of a central macrophage surrounded by developing erythroblasts. However, the in vivo role of macrophages in erythropoiesis under homeostasis or disease remains unclear. Specific depletion of CD169+ macrophages markedly reduced erythroblasts in the BM but did not result in overt anemia under homeostasis likely due to concomitant alterations in RBC clearance. However, CD169+ macrophage depletion significantly impaired erythropoietic recovery from hemolytic anemia, acute blood loss and myeloablation. Furthermore, macrophage depletion normalized the erythroid compartment in a JAK2V617F-driven murine model of polycythemia vera (PV), suggesting that erythropoiesis in PV, unexpectedly, remains under the control of macrophages in the BM and splenic microenvironments. These data indicate that CD169+ macrophages promote late erythroid maturation and that modulation of the macrophage compartment represents a novel strategy to treat erythropoietic disorders.A role for macrophages in erythropoiesis was suggested several decades ago when erythroblastic islands in the bone marrow, composed of a central macrophage surrounded by developing erythroblasts, were described. However, the in vivo role of macrophages in erythropoiesis under homeostatic conditions or in disease remains unclear. We found that specific depletion of CD169+ macrophages markedly reduced the number of erythroblasts in the bone marrow but did not result in overt anemia under homeostatic conditions, probably because of concomitant alterations in red blood cell clearance. However, CD169+ macrophage depletion significantly impaired erythropoietic recovery from hemolytic anemia, acute blood loss and myeloablation. Furthermore, macrophage depletion normalized the erythroid compartment in a JAK2V617F-driven mouse model of polycythemia vera, suggesting that erythropoiesis in polycythemia vera remains under the control of macrophages in the bone marrow and splenic microenvironments. These results indicate that CD169+ macrophages promote late erythroid maturation and that modulation of the macrophage compartment may be a new strategy to treat erythropoietic disorders.


Developmental Cell | 2014

Osterix Marks Distinct Waves of Primitive and Definitive Stromal Progenitors during Bone Marrow Development

Toshihide Mizoguchi; Sandra Pinho; Jalal Ahmed; Yuya Kunisaki; Maher Hanoun; Avital Mendelson; Noriaki Ono; Henry M. Kronenberg; Paul S. Frenette

Mesenchymal stem and progenitor cells (MSPCs) contribute to bone marrow (BM) homeostasis by generating multiple types of stromal cells. MSPCs can be labeled in the adult BM by Nestin-GFP, whereas committed osteoblast progenitors are marked by Osterix expression. However, the developmental origin and hierarchical relationship of stromal cells remain largely unknown. Here, by using a lineage-tracing system, we describe three distinct waves of contributions of Osterix(+) cells in the BM. First, Osterix(+) progenitors in the fetal BM contribute to nascent bone tissues and transient stromal cells that are replaced in the adult marrow. Second, Osterix-expressing cells perinatally contribute to osteolineages and long-lived BM stroma, which have characteristics of Nestin-GFP(+) MSPCs. Third, Osterix labeling in the adult marrow is osteolineage-restricted, devoid of stromal contribution. These results uncover a broad expression profile of Osterix and raise the intriguing possibility that distinct waves of stromal cells, primitive and definitive, may organize the developing BM.


Cancer Research | 2004

Role of the Human ST6GalNAc-I and ST6GalNAc-II in the Synthesis of the Cancer-Associated Sialyl-Tn Antigen

Nuno T. Marcos; Sandra Pinho; Catarina Grandela; Andrea Cruz; Bénédicte Samyn-Petit; Anne Harduin-Lepers; Raquel Almeida; Filipe Silva; Vanessa A. Morais; Júlia Costa; Jan Kihlberg; Henrik Clausen; Celso A. Reis

The Sialyl-Tn antigen (Neu5Acα2–6GalNAc-O-Ser/Thr) is highly expressed in several human carcinomas and is associated with carcinoma aggressiveness and poor prognosis. We characterized two human sialyltransferases, CMP-Neu5Ac:GalNAc-R α2,6-sialyltransferase (ST6GalNAc)-I and ST6GalNAc-II, that are candidate enzymes for Sialyl-Tn synthases. We expressed soluble recombinant hST6GalNAc-I and hST6GalNAc-II and characterized the substrate specificity of both enzymes toward a panel of glycopeptides, glycoproteins, and other synthetic glycoconjugates. The recombinant ST6GalNAc-I and ST6GalNAc-II showed similar substrate specificity toward glycoproteins and GalNAcα-O-Ser/Thr glycopeptides, such as glycopeptides derived from the MUC2 mucin and the HIVgp120. We also observed that the amino acid sequence of the acceptor glycopeptide contributes to the in vitro substrate specificity of both enzymes. We additionally established a gastric cell line, MKN45, stably transfected with the full length of either ST6GalNAc-I or ST6GalNAc-II and evaluated the carbohydrate antigens expression profile induced by each enzyme. MKN45 transfected with ST6GalNAc-I showed high expression of Sialyl-Tn, whereas MKN45 transfected with ST6GalNAc-II showed the biosynthesis of the Sialyl-6T structure [Galβ1–3 (Neu5Acα2–6)GalNAc-O-Ser/Thr]. In conclusion, although both enzymes show similar in vitro activities when Tn antigen alone is available, whenever both Tn and T antigens are present, ST6GalNAc-I acts preferentially on Tn antigen, whereas the ST6GalNAc-II acts preferentially on T antigen. Our results show that ST6GalNAc-I is the major Sialyl-Tn synthase and strongly support the hypothesis that the expression of the Sialyl-Tn antigen in cancer cells is due to ST6GalNAc-I activity.


Cell Stem Cell | 2014

Acute Myelogenous Leukemia-Induced Sympathetic Neuropathy Promotes Malignancy in an Altered Hematopoietic Stem Cell Niche

Maher Hanoun; Dachuan Zhang; Toshihide Mizoguchi; Sandra Pinho; Halley Pierce; Yuya Kunisaki; Julie Lacombe; Scott A. Armstrong; Ulrich Dührsen; Paul S. Frenette

Perivascular mesenchymal stem and progenitor cells (MSPCs) are critical for forming a healthy hematopoietic stem cell (HSC) niche. However, the interactions and influence of acute myelogenous leukemia (AML) stem cells with the microenvironment remain largely unexplored. We have unexpectedly found that neuropathy of the sympathetic nervous system (SNS) promotes leukemic bone marrow infiltration in an MLL-AF9 AML model. Development of AML disrupts SNS nerves and the quiescence of Nestin(+) niche cells, leading to an expansion of phenotypic MSPCs primed for osteoblastic differentiation at the expense of HSC-maintaining NG2(+) periarteriolar niche cells. Adrenergic signaling promoting leukemogenesis is transduced by the β2, but not β3, adrenergic receptor expressed on stromal cells of leukemic bone marrow. These results indicate that sympathetic neuropathy may represent a mechanism for the malignancy in order to co-opt the microenvironment and suggest separate mesenchymal niche activities for malignant and healthy hematopoietic stem cells in the bone marrow.


Cell Reports | 2013

Endothelial Jagged-1 Is necessary for homeostatic and regenerative hematopoiesis

Michael G. Poulos; Peipei Guo; Natalie M. Kofler; Sandra Pinho; Michael C. Gutkin; Anastasia Tikhonova; Iannis Aifantis; Paul S. Frenette; Jan Kitajewski; Shahin Rafii; Jason M. Butler

The bone marrow (BM) microenvironment is composed of multiple niche cells that, by producing paracrine factors, maintain and regenerate the hematopoietic stem cell (HSC) pool (Morrison and Spradling, 2008). We have previously demonstrated that endothelial cells support the proper regeneration of the hematopoietic system following myeloablation (Butler et al., 2010; Hooper et al., 2009; Kobayashi et al., 2010). Here, we demonstrate that expression of the angiocrine factor Jagged-1, supplied by the BM vascular niche, regulates homeostatic and regenerative hematopoiesis through a Notch-dependent mechanism. Conditional deletion of Jagged-1 in endothelial cells (Jag1((ECKO)) mice) results in a profound decrease in hematopoiesis and premature exhaustion of the adult HSC pool, whereas quantification and functional assays demonstrate that loss of Jagged-1 does not perturb vascular or mesenchymal compartments. Taken together, these data demonstrate that the instructive function of endothelial-specific Jagged-1 is required to support the self-renewal and regenerative capacity of HSCs in the adult BM vascular niche.

Collaboration


Dive into the Sandra Pinho's collaboration.

Top Co-Authors

Avatar

Paul S. Frenette

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Lucas

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jalal Ahmed

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dachuan Zhang

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Toshihide Mizoguchi

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Aviv Bergman

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Halley Pierce

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ingmar Bruns

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Qiaozhi Wei

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge