Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Pinkert is active.

Publication


Featured researches published by Sandra Pinkert.


Gene Therapy | 2007

Highly efficient and specific modulation of cardiac calcium homeostasis by adenovector-derived short hairpin RNA targeting phospholamban.

Henry Fechner; Lennart Suckau; Jens Kurreck; Isaac Sipo; Xiaomin Wang; Sandra Pinkert; S. Loschen; J. Rekittke; Stefan Weger; Dick H. W. Dekkers; Roland Vetter; Volker A. Erdmann; Heinz-Peter Schultheiss; Martin Paul; Jos M.J. Lamers; Wolfgang Poller

Impaired function of the phospholamban (PLB)-regulated sarcoplasmic reticulum Ca2+ pump (SERCA2a) contributes to cardiac dysfunction in heart failure (HF). PLB downregulation may increase SERCA2a activity and improve cardiac function. Small interfering (si)RNAs mediate efficient gene silencing by RNA interference (RNAi). However, their use for in vivo gene therapy is limited by siRNA instability in plasma and tissues, and by low siRNA transfer rates into target cells. To address these problems, we developed an adenoviral vector (AdV) transcribing short hairpin (sh)RNAs against rat PLB and evaluated its potential to silence the PLB gene and to modulate SERCA2a-mediated Ca2+ sequestration in primary neonatal rat cardiomyocytes (PNCMs). Over a period of 13 days, vector transduction resulted in stable >99.9% ablation of PLB-mRNA at a multiplicity of infection of 100. PLB protein gradually decreased until day 7 (7±2% left), whereas SERCA, Na+/Ca2+ exchanger (NCX1), calsequestrin and troponin I protein remained unchanged. PLB silencing was associated with a marked increase in ATP-dependent oxalate-supported Ca2+ uptake at 0.34 μM of free Ca2+, and rapid loss of responsiveness to protein kinase A-dependent stimulation of Ca2+ uptake was maintained until day 7. In summary, these results indicate that AdV-derived PLB-shRNA mediates highly efficient, specific and stable PLB gene silencing and modulation of active Ca2+ sequestration in PNCMs. The availability of the new vector now enables employment of RNAi for the treatment of HF in vivo.


Molecular & Cellular Proteomics | 2014

Proteomic Analysis of the Multimeric Nuclear Egress Complex of Human Cytomegalovirus

Jens Milbradt; Alexandra Kraut; Corina Hutterer; Eric Sonntag; Cathrin Schmeiser; Myriam Ferro; Sabrina Wagner; Tihana Lenac; Claudia Claus; Sandra Pinkert; Stuart T. Hamilton; William D. Rawlinson; Heinrich Sticht; Yohann Couté; Manfred Marschall

Herpesviral capsids are assembled in the host cell nucleus before being translocated into the cytoplasm for further maturation. The crossing of the nuclear envelope represents a major event that requires the formation of the nuclear egress complex (NEC). Previous studies demonstrated that human cytomegalovirus (HCMV) proteins pUL50 and pUL53, as well as their homologs in all members of Herpesviridae, interact with each other at the nuclear envelope and form the heterodimeric core of the NEC. In order to characterize further the viral and cellular protein content of the multimeric NEC, the native complex was isolated from HCMV-infected human primary fibroblasts at various time points and analyzed using quantitative proteomics. Previously postulated components of the HCMV-specific NEC, as well as novel potential NEC-associated proteins such as emerin, were identified. In this regard, interaction and colocalization between emerin and pUL50 were confirmed by coimmunoprecipitation and confocal microscopy analyses, respectively. A functional validation of viral and cellular NEC constituents was achieved through siRNA-mediated knockdown experiments. The important role of emerin in NEC functionality was demonstrated by a reduction of viral replication when emerin expression was down-regulated. Moreover, under such conditions, reduced production of viral proteins and deregulation of viral late cytoplasmic maturation were observed. Combined, these data prove the functional importance of emerin as an NEC component, associated with pUL50, pUL53, pUL97, p32/gC1qR, and further regulatory proteins. Summarized, our findings provide the first proteomics-based characterization and functional validation of the HCMV-specific multimeric NEC.


Circulation | 2009

Prevention of cardiac dysfunction in acute coxsackievirus B3 cardiomyopathy by inducible expression of a soluble coxsackievirus-adenovirus receptor.

Sandra Pinkert; Dirk Westermann; Xiaomin Wang; Karin Klingel; Andrea Dörner; Konstantinos Savvatis; Tobias Grössl; Stefanie Krohn; Carsten Tschöpe; Heinz Zeichhardt; Katja Kotsch; Kerstin Weitmann; Wolfgang Hoffmann; Heinz-Peter Schultheiss; Owen Bradley Spiller; Wolfgang Poller; Henry Fechner

Background— Group B coxsackieviruses (CVBs) are the prototypical agents of acute myocarditis and chronic dilated cardiomyopathy, but an effective targeted therapy is still not available. Here, we analyze the therapeutic potential of a soluble (s) virus receptor molecule against CVB3 myocarditis using a gene therapy approach. Methods and Results— We generated an inducible adenoviral vector (AdG12) for strict drug-dependent delivery of sCAR-Fc, a fusion protein composed of the coxsackievirus-adenovirus receptor (CAR) extracellular domains and the carboxyl terminus of human IgG1-Fc. Decoy receptor expression was strictly doxycycline dependent, with no expression in the absence of an inducer. CVB3 infection of HeLa cells was efficiently blocked by supernatant from AdG12-transduced cells, but only in the presence of doxycycline. After liver-specific transfer, AdG12 (plus doxycycline) significantly improved cardiac contractility and diastolic relaxation compared with a control vector in CVB3-infected mice if sCAR-Fc was induced before infection (left ventricular pressure 59±3.8 versus 45.4±2.7 mm Hg, median 59 versus 45.8 mm Hg, P<0.01; dP/dtmax 3645.1±443.6 versus 2057.9±490.2 mm Hg/s, median 3526.6 versus 2072 mm Hg/s, P<0.01; and dP/dtmin −2125.5±330.5 versus −1310.2±330.3 mm Hg/s, median −2083.7 versus −1295.9 mm Hg/s, P<0.01) and improved contractility if induced concomitantly with infection (left ventricular pressure 76.4±19.2 versus 56.8±10.3 mm Hg, median 74.8 versus 54.4 mm Hg, P<0.05; dP/dtmax 5214.2±1786.2 versus 3011.6±918.3 mm Hg/s, median 5182.1 versus 3106.6 mm Hg/s, P<0.05), respectively. Importantly, hemodynamics of animals treated with AdG12 (plus doxycycline) were similar to uninfected controls. Preinfection induction of sCAR-Fc completely blocked and concomitant induction strongly reduced cardiac CVB3 infection, myocardial injury, and inflammation. Conclusion— AdG12-mediated sCAR-Fc delivery prevents cardiac dysfunction in CVB3 myocarditis under prophylactic and therapeutic conditions.


Gene Therapy | 2007

Coxsackievirus B3 and adenovirus infections of cardiac cells are efficiently inhibited by vector-mediated RNA interference targeting their common receptor.

Henry Fechner; Sandra Pinkert; Xiaomin Wang; Isaac Sipo; Lennart Suckau; Jens Kurreck; Andrea Dörner; Sollerbrant K; Heinz Zeichhardt; Hans-Peter Grunert; Roland Vetter; H.-P. Schultheiss; Wolfgang Poller

As coxsackievirus B3 (CoxB3) and adenoviruses may cause acute myocarditis and inflammatory cardiomyopathy, isolation of the common coxsackievirus–adenovirus-receptor (CAR) has provided an interesting new target for molecular antiviral therapy. Whereas many viruses show high mutation rates enabling them to develop escape mutants, mutations of their cellular virus receptors are far less likely. We report on antiviral efficacies of CAR gene silencing by short hairpin (sh)RNAs in the cardiac-derived HL-1 cell line and in primary neonatal rat cardiomyocytes (PNCMs). Treatment with shRNA vectors mediating RNA interference against the CAR resulted in almost complete silencing of receptor expression both in HL-1 cells and PNCMs. Whereas CAR was silenced in HL-1 cells as early as 24 h after vector treatment, its downregulation in PNCMs did not become significant before day 6. CAR knockout resulted in inhibition of CoxB3 infections by up to 97% in HL-1 cells and up to 90% in PNCMs. Adenovirus was inhibited by only 75% in HL-1 cells, but up to 92% in PNCMs. We conclude that CAR knockout by shRNA vectors is efficient against CoxB3 and adenovirus in primary cardiac cells, but the efficacy of this approach in vivo may be influenced by cell type-specific silencing kinetics in different tissues.


Gene Therapy | 2007

Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction

Isaac Sipo; Henry Fechner; Sandra Pinkert; Lennart Suckau; Xiaomin Wang; Stefan Weger; Wolfgang Poller

Recently it was shown that several new pseudotyped adeno-associated virus (AAV) vectors support cardioselective expression of transgenes. The molecular mechanisms underlying this propensity for cardiac cell transduction are not well understood. We comparatively analyzed AAV vector attachment, internalization, intracellular trafficking, and nuclear uncoating of recombinant self-complementary (sc) AAV2.2 versus pseudotyped scAAV2.6 vectors expressing green fluorescence protein (GFP) in cells of cardiac origin. In cardiac-derived HL-1 cells and primary neonatal rat cardiomyocytes (PNCMs), expression of GFP increased rapidly after incubation with scAAV2.6-GFP, but remained low after scAAV2.2-GFP. Internalization of scAAV2.6-GFP was more efficient than that of scAAV2.2-GFP. Nuclear translocation was similarly efficient for both, but differential nuclear uncoating rates emerged as a key additional determinant of transduction: 30% of all scAAV2.6-GFP genomes translocated to the nucleus became uncoated within 48 h, but only 16% of scAAV2.2-GFP genomes. In contrast to this situation in cells of cardiac origin, scAAV2.2-GFP displayed more efficient internalization and similar (tumor cell line HeLa) or higher (human microvascular endothelial cell (HMEC)) uncoating rates than scAAV.2.6-GFP in non-cardiac cell types. In summary, both internalization and nuclear uncoating are key determinants of cardiac transduction by scAAV2.6 vectors. Any in vitro screening for the AAV pseudotype most suitable for cardiac gene therapy – which is desirable since it may allow significant reductions in vector load in upcoming clinical trials – needs to quantitate both key steps in transduction.


Journal of Virology | 2011

Involvement of p32 and microtubules in alteration of mitochondrial functions by rubella virus.

Claudia Claus; S. Chey; S. Heinrich; M. Reins; B. Richardt; Sandra Pinkert; Henry Fechner; F. Gaunitz; I. Schäfer; P. Seibel; Uwe G. Liebert

ABSTRACT The interaction of the rubella virus (RV) capsid (C) protein and the mitochondrial p32 protein is believed to participate in virus replication. In this study, the physiological significance of the association of RV with mitochondria was investigated by silencing p32 through RNA interference. It was demonstrated that downregulation of p32 interferes with microtubule-directed redistribution of mitochondria in RV-infected cells. However, the association of the viral C protein with mitochondria was not affected. When cell lines either pretreated with respiratory chain inhibitors or cultivated under (mild) hypoxic conditions were infected with RV, viral replication was reduced in a time-dependent fashion. Additionally, RV infection induces increased activity of mitochondrial electron transport chain complex III, which was associated with an increase in the mitochondrial membrane potential. These effects are outstanding among the examples of mitochondrial alterations caused by viruses. In contrast to the preferential localization of p32 to the mitochondrial matrix in most cell lines, RV-permissive cell lines were characterized by an almost exclusive membrane association of p32. Conceivably, this contributes to p32 function(s) during RV replication. The data presented suggest that p32 fulfills an essential function for RV replication in directing trafficking of mitochondria near sites of viral replication to meet the energy demands of the virus.


Journal of Virology | 2011

Virus-host coevolution in a persistently coxsackievirus B3-infected cardiomyocyte cell line.

Sandra Pinkert; Karin Klingel; Vanessa Lindig; Andrea Dörner; Heinz Zeichhardt; Owen Bradley Spiller; Henry Fechner

ABSTRACT Coevolution of virus and host is a process that emerges in persistent virus infections. Here we studied the coevolutionary development of coxsackievirus B3 (CVB3) and cardiac myocytes representing the major target cells of CVB3 in the heart in a newly established persistently CVB3-infected murine cardiac myocyte cell line, HL-1CVB3. CVB3 persistence in HL-1CVB3 cells represented a typical carrier-state infection with high levels (106 to 108 PFU/ml) of infectious virus produced from only a small proportion (approximately 10%) of infected cells. CVB3 persistence was characterized by the evolution of a CVB3 variant (CVB3-HL1) that displayed strongly increased cytotoxicity in the naive HL-1 cell line and showed increased replication rates in cultured primary cardiac myocytes of mouse, rat, and naive HL-1 cells in vitro, whereas it was unable to establish murine cardiac infection in vivo. Resistance of HL-1CVB3 cells to CVB3-HL1 was associated with reduction of coxsackievirus and adenovirus receptor (CAR) expression. Decreasing host cell CAR expression was partially overcome by the CVB3-HL1 variant through CAR-independent entry into resistant cells. Moreover, CVB3-HL1 conserved the ability to infect cells via CAR. The employment of a soluble CAR variant resulted in the complete cure of HL-1CVB3 cells with respect to the adapted virus. In conclusion, this is the first report of a CVB3 carrier-state infection in a cardiomyocyte cell line, revealing natural coevolution of CAR downregulation with CAR-independent viral entry in resistant host cells as an important mechanism of induction of CVB3 persistence.


Molecules | 2011

Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections.

Henry Fechner; Sandra Pinkert; Anja Geisler; Wolfgang Poller; Jens Kurreck

Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents.


Antiviral Research | 2009

Combination of soluble coxsackievirus-adenovirus receptor and anti-coxsackievirus siRNAs exerts synergistic antiviral activity against coxsackievirus B3

Denise Werk; Sandra Pinkert; Albert Heim; Heinz Zeichhardt; Hans-Peter Grunert; Wolfgang Poller; Volker A. Erdmann; Henry Fechner; Jens Kurreck

Coxsackievirus B3 (CVB-3) is a major causative agent of chronic heart muscle infections. The present study describes a cell culture system with an ongoing virus infection to evaluate two novel inhibitory strategies, either individually or combined: (1) RNA interference (RNAi) to degrade cytoplasmatic CVB-3 RNA and (2) a vector-delivered soluble variant of the coxsackievirus-adenovirus receptor fused to a human immunoglobulin (sCAR-Fc), which inhibits cellular uptake of CVB-3. Both approaches were capable of inhibiting CVB-3 in persistently infected human myocardial fibroblasts. The antiviral effect of a single treatment lasted for up to one week and could be extended by repeated applications. Each of the single treatments initially reduced the virus titer by approximately 1-log, whereas the combination of both approaches resulted in 4-log inhibition and retained substantial antiviral activity at later time points, when the effect of sCAR-Fc or siRNAs alone had already disappeared. Further analysis revealed that sCAR-Fc protects cells from virus-induced lysis but does not diminish the virus load. Reduction of the virus titer was only achieved with additional destruction of viral RNA by RNAi. Taken together, combination of RNAi and a protein-based antiviral strategy was found to result in a strong synergistic inhibition of an ongoing virus infection.


Antiviral Research | 2010

Inhibition of adenovirus infections by siRNA-mediated silencing of early and late adenoviral gene functions

Anne Eckstein; Tobias Größl; Anja Geisler; Xiaomin Wang; Sandra Pinkert; Tanja Pozzuto; Christina Schwer; Jens Kurreck; Stefan Weger; Roland Vetter; Wolfgang Poller; Henry Fechner

Adenoviruses are pathological agents inducing mild respiratory and gastrointestinal infections. Under certain circumstances, for example in immunosuppressed patients, they induce severe infections of the liver, heart and lung, sometimes leading to death. Currently, adenoviral infections are treated by palliative care with no curative antiviral therapy yet available. Gene silencing by RNA interference (RNAi) has been shown to be a potent new therapeutic option for antiviral therapy. In the present study, we examined the potential of RNAi-mediated inhibition of adenovirus 5 infection by the use of small interfering (si)RNAs targeting both early (E1A) and late (hexon, IVa2) adenoviral genes. Several of the initially analyzed siRNAs directed against E1A, hexon and IVa2 showed a distinct antiviral activity. Among them, one siRNA for each gene was selected and used for the further comparative investigations of their efficiency to silence adenoviruses. Silencing of the late genes was more efficient in inhibiting adenoviral replication than comparable silencing of the E1A early gene. A combination strategy involving down-regulation of any two or all three of the targeted genes did not result in an enhanced inhibition of viral replication as compared to the single siRNA approaches targeting the late genes. However, protection against adenovirus-mediated cytotoxicity was substantially improved by combining siRNAs against either of the two late genes with the siRNA against the E1A early gene. Thus, an enhanced anti-adenoviral efficiency of RNAi-based inhibition strategies can be achieved by co-silencing of early and late adenoviral genes, with down regulation of the E1A as a crucial factor.

Collaboration


Dive into the Sandra Pinkert's collaboration.

Researchain Logo
Decentralizing Knowledge