Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Pizzarello is active.

Publication


Featured researches published by Sandra Pizzarello.


Geochimica et Cosmochimica Acta | 2000

Non-racemic amino acids in the Murray and Murchison meteorites

Sandra Pizzarello; John R. Cronin

Small (1.0-9.2%) L-enantiomer excesses were found in six alpha-methyl-alpha-amino alkanoic acids from the Murchison (2.8-9.2%) and Murray (1.0-6.0%) carbonaceous chondrites by gas chromatography-mass spectroscopy of their N-trifluoroacetyl or N-pentafluoropropyl isopropyl esters. These amino acids [2-amino-2,3-dimethylpentanoic acid (both diastereomers), isovaline, alpha-methyl norvaline, alpha-methyl valine, and alpha-methyl norleucine] are either unknown or rare in the terrestrial biosphere. Enantiomeric excesses were either not observed in the four alpha-H-alpha-amino alkanoic acids analyzed (alpha-amino-n-butyric acid, norvaline, alanine, and valine) or were attributed to terrestrial contamination. The substantial excess of L-alanine reported by others was not found in the alanine in fractionated extracts of either meteorite. The enantiomeric excesses reported for the alpha-methyl amino acids may be the result of partial photoresolution of racemic mixtures caused by ultraviolet circularly polarized light in the presolar cloud. The alpha-methyl-alpha-amino alkanoic acids could have been significant in the origin of terrestrial homochirality given their resistance to racemization and the possibility for amplification of their enantiomeric excesses suggested by the strong tendency of their polymers to form chiral secondary structure.


Advances in Space Research | 1983

Amino acids in meteorites

John R. Cronin; Sandra Pizzarello

Carbonaceous chondrites carry a record of chemical evolution that is unparalleled among presently accessible natural materials. Within the complex suite of organic compounds that characterize these meteorites, amino acids occur at a total concentration that may reach 0.6 micromole g-1 meteorite (approximately 60 ppm). Both free amino acids and acid-labile amino acid derivatives have been found in hot-water extracts of a CI1 and seven CM2 chondrites. Although the amino acid composition of all CM2 chondrites is not the same, differences may be largely explicable on the basis of spontaneous and biologically-caused decomposition occurring during their terrestrial residence. The amino acids of the Murchison meteorite (CM2) have been extensively analyzed and 52 amino acids have been positively identified. Thirty three of these amino acids are unknown in natural materials other than carbonaceous chondrites. Thus the Murchison meteorite has recently been the major source of new naturally-occurring amino acids. The Murchison amino acids comprise a mixture of C2 through C8 cyclic and acyclic monoamino alkanoic and alkandioic acids of nearly complete structural diversity. Within the acyclic monoamino alkanoic acid series, primary alpha-amino alpha-branched amino acids are predominant. The concentrations of individual amino acids decline exponentially with increasing carbon number within homologous series. Amino acid enantiomers are found in approximately equal amounts. Eight of the terrestrial protein amino acids have been found.


Geochimica et Cosmochimica Acta | 2003

Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association

Sandra Pizzarello; Michael E. Zolensky; Kendra A. Turk

Abstract The enantiomeric and carbon-isotopic composition of the amino acid isovaline have been analyzed in several samples of the Murchison meteorite and one sample of the Murray meteorite. l -Enantiomeric excesses of the amino acid were found to range from 0 to 15.2%, varying significantly both between meteorite stones and at short distances within a single stone. The upper limit of this range is the largest enantiomeric excess measured to date for a biologically rare meteoritic amino acid and raises doubts that circularly polarized light irradiation could have been the sole cause of amino acids chiral asymmetry in meteorites. Individual d - and l- isovaline δ13C values ware found to be about +18‰, with no significant differences between the two enantiomers to suggest terrestrial contamination. The amino acid relative abundance also varied between samples, with isovaline/alanine ratios of 0.5 to 6.5. X-ray diffraction analyses of contiguous meteorite fragments suggest a possible correlation between isovaline and hydrous silicates abundances.


Geochimica et Cosmochimica Acta | 1992

Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite

R. V. Krishnamurthy; Samuel Epstein; John R. Cronin; Sandra Pizzarello; George U. Yuen

The monocarboxylic acids and hydrocarbons of the Murchison meteorite (CM2) were isolated for isotopic analysis. The nonvolatile hydrocarbons were analyzed as crude methanol and benzene-methanol extracts and also after separation by silica gel chromatography into predominantly aliphatic, aromatic, and polar hydrocarbon fractions. The volatile hydrocarbons were obtained after progressive decomposition of the meteorite matrix by freeze-thaw, hot water, and acid treatment. Molecular analyses of the aromatic hydrocarbons showed them to comprise a complex suite of compounds in which pyrene, fluoranthene, phenanthrene, and acenaphthene were the most abundant components, a result similar to earlier analyses. The polar hydrocarbons also comprise a very complex mixture in which aromatic ketones, nitrogen, and sulfur heterocycles were identified. Both delta 13C and delta D values were obtained for all preparations. The monocarboxylic acids, aliphatic, aromatic, and polar hydrocarbons, and the indigenous volatile hydrocarbons were found to be D-rich with delta D values ranging from about +100 to +1000. The delta 13C values ranged overall from -13 to +17. The deuterium enrichment observed in these compounds is suggestive of a relationship to interstellar organic compounds. In two separate analyses, the delta D values of the nonvolatile hydrocarbons were observed to increase in the following order: aliphatic < aromatic < polar. This finding is consistent with an early solar system or parent body conversion of aromatic to aliphatic compounds as well as the earlier suggestion of pyrolytic formation of aromatic from aliphatic compounds.


Geochimica et Cosmochimica Acta | 1990

Aliphatic hydrocarbons of the Murchison meteorite

John R. Cronin; Sandra Pizzarello

The indigenous organic compounds of carbonaceous chondrites have been difficult to characterize because of problems arising from terrestrial contamination. The fall of the Murchison meteorite (CM2) provided pristine samples which allowed the resolution of some prior ambiguities as, for example, in the case of the amino acids. However, the nature of the aliphatic hydrocarbons has remained unclear. Shortly after the Murchison fall, one laboratory found them to be mainly cycloalkanes; another found, in order of abundance, branched alkanes, olefins, and cycloalkanes; while a third reported predominantly n-alkanes followed by methyl alkanes and olefins. We have reinvestigated this question using benzene-methanol as the extraction solvent, silica-gel chromatography for fractionation of the extract, and GC-MS, and IR and NMR spectroscopic techniques for the analyses. When interior samples were obtained and the analyses carried out under conditions that minimized environmental contaminants, we have found the principal aliphatic components of the Murchison meteorite to be a structurally diverse suite of C15 to C30 branched alkyl-substituted mono-, di-, and tricyclic alkanes. Comparative analyses were carried out on the Murray (CM2), Allende (CV3), and New Concord (L6) chondrites that illustrate the nature of the contamination problem encountered with carbonaceous chondrites.


Geochimica et Cosmochimica Acta | 1991

Isotopic analyses of amino acids from the Murchison meteorite

Sandra Pizzarello; R. V. Krishnamurthy; Samuel Epstein; John R. Cronin

Previous isotopic analyses of the total amino acids of the Murchison meteorite showed these compounds to be substantially enriched in 2H, 13C, and 15N relative to terrestrial organic matter. These analyses have been repeated (2H, 13C) with inclusion of an ultrafiltration step to exclude the possibility that a fine particulate contaminant carried the isotopic excesses observed in the previous work. In addition, the meteorite amino acids were chromatographically separated to rule out the possibility that the isotopic enrichment of the meteorite extract could reside in basic compounds other than amino acids. The results indicate that the Murchison amino acids are truly isotopically unusual, that the isotopic excesses reside in at least several different amino acids, and that the isotopic contents of some of these amino acids reach values of about +40% (delta 13C) and +2500% (delta D). If it is assumed that the high deuterium content of the meteorite alpha-amino acids is a result of the synthesis of their molecular precursors by low temperature ion-molecule reactions in an interstellar cloud, their formation by aqueous phase Strecker reactions in the parent body is consistent with their general characteristics and with known parent body processes.


Science | 2012

Radar-Enabled Recovery of the Sutter’s Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia

Peter Jenniskens; Marc Fries; Q.-Z. Yin; Michael E. Zolensky; Alexander N. Krot; Scott A. Sandford; Derek W. G. Sears; Robert Beauford; Denton S. Ebel; Jon M. Friedrich; Kazuhide Nagashima; Josh Wimpenny; Akane Yamakawa; Kunihiko Nishiizumi; Yasunori Hamajima; Marc W. Caffee; Kees C. Welten; M. Laubenstein; Andrew M. Davis; Steven B. Simon; Philipp R. Heck; Edward D. Young; Issaku E. Kohl; Mark H. Thiemens; Morgan H. Nunn; Takashi Mikouchi; Kenji Hagiya; Kazumasa Ohsumi; Thomas A. Cahill; Jonathan A. Lawton

The Meteor That Fell to Earth In April 2012, a meteor was witnessed over the Sierra Nevada Mountains in California. Jenniskens et al. (p. 1583) used a combination of photographic and video images of the fireball coupled with Doppler weather radar images to facilitate the rapid recovery of meteorite fragments. A comprehensive analysis of some of these fragments shows that the Sutters Mill meteorite represents a new type of carbonaceous chondrite, a rare and primitive class of meteorites that contain clues to the origin and evolution of primitive materials in the solar system. The unexpected and complex nature of the fragments suggests that the surfaces of C-class asteroids, the presumed parent bodies of carbonaceous chondrites, are more complex than previously assumed. Analysis of this rare meteorite implies that the surfaces of C-class asteroids can be more complex than previously assumed. Doppler weather radar imaging enabled the rapid recovery of the Sutter’s Mill meteorite after a rare 4-kiloton of TNT–equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand’s parameter = 2.8 ± 0.3). Sutter’s Mill is a regolith breccia composed of CM (Mighei)–type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.


Cold Spring Harbor Perspectives in Biology | 2010

The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry.

Sandra Pizzarello; Everett L. Shock

Carbon-containing meteorites provide a natural sample of the extraterrestrial organic chemistry that occurred in the solar system ahead of lifes origin on the Earth. Analyses of 40 years have shown the organic content of these meteorites to be materials as diverse as kerogen-like macromolecules and simpler soluble compounds such as amino acids and polyols. Many meteoritic molecules have identical counterpart in the biosphere and, in a primitive group of meteorites, represent the majority of their carbon. Most of the compounds in meteorites have isotopic compositions that date their formation to presolar environments and reveal a long and active cosmochemical evolution of the biogenic elements. Whether this evolution resumed on the Earth to foster biogenesis after exogenous delivery of meteoritic and cometary materials is not known, yet, the selective abundance of biomolecule precursors evident in some cosmic environments and the unique L-asymmetry of some meteoritic amino acids are suggestive of their possible contribution to terrestrial molecular evolution.


Geochimica et Cosmochimica Acta | 1993

Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite

John R. Cronin; Sandra Pizzarello; Samuel Epstein; R.V Krishnamurthy

The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitution position isomers represented at each carbon number. The alpha-hydroxycarboxylic acids and alpha-hydroxydicarboxylic acids correspond structurally to many of the known meteoritic alpha-aminocarboxylic acids and alpha-aminodicarboxylic acids, a fact that supports the proposal that a Strecker synthesis was involved in the formation of both classes of compounds. Isotopic analyses show these acids to be D-rich relative to terrestrial organic compounds as expected; however, the hydroxy acids appear to be isotopically lighter than the amino acids with respect to both carbon and hydrogen. The latter finding would not be expected if both classes of compounds came exclusively from common precursors as would have been the case for a Strecker synthesis.


Geochimica et Cosmochimica Acta | 1987

13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites

John R. Cronin; Sandra Pizzarello; James S. Frye

13C NMR spectra have been obtained of the insoluble carbon residues resulting from HF-digestion of three carbonaceous chondrites, Orgueil (C1), Murchison (CM2), and Allende (CV3). Spectra obtained using the cross polarization magic-angle spinning technique show two major features attributable respectively to carbon in aliphatic/olefinic structures. The spectrum obtained from the Allende sample was weak, presumably as a consequence of its low hydrogen content. Single pulse excitation spectra, which do not depend on 1H-13C polarization transfer for signal enhancement were also obtained. These spectra, which may be more representative of the total carbon in the meteorite samples, indicate a greater content of carbon in aromatic/olefinic structures. These results suggest that extensive polycyclic aromatic sheets are important structural features of the insoluble carbon of all three meteorites. The Orgueil and Murchison materials contain additional hydrogenated aromatic/olefinic and aliphatic groups.

Collaboration


Dive into the Sandra Pizzarello's collaboration.

Top Co-Authors

Avatar

John R. Cronin

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George U. Yuen

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Samuel Epstein

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam A. Monroe

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge