Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Pohl is active.

Publication


Featured researches published by Sandra Pohl.


Science | 2011

A Key Enzyme in the Biogenesis of Lysosomes Is a Protease That Regulates Cholesterol Metabolism

Katrin Marschner; Katrin Kollmann; Michaela Schweizer; Thomas Braulke; Sandra Pohl

Defects in a sterol regulatory pathway also cause defects in lysosome assembly leading to mucolipidosis and disease. Mucolipidosis II is a severe lysosomal storage disorder caused by defects in the α and β subunits of the hexameric N-acetylglucosamine-1-phosphotransferase complex essential for the formation of the mannose 6-phosphate targeting signal on lysosomal enzymes. Cleavage of the membrane-bound α/β-subunit precursor by an unknown protease is required for catalytic activity. Here we found that the α/β-subunit precursor is cleaved by the site-1 protease (S1P) that activates sterol regulatory element–binding proteins in response to cholesterol deprivation. S1P-deficient cells failed to activate the α/β-subunit precursor and exhibited a mucolipidosis II–like phenotype. Thus, S1P functions in the biogenesis of lysosomes, and lipid-independent phenotypes of S1P deficiency may be caused by lysosomal dysfunction.


European Journal of Cell Biology | 2010

Mannose phosphorylation in health and disease

Katrin Kollmann; Sandra Pohl; Katrin Marschner; Marisa Encarnação; Imme Sakwa; Stephan Tiede; Ben J. Poorthuis; Torben Lübke; Sven Müller-Loennies; Stephan Storch; Thomas Braulke

Lysosomal hydrolases catalyze the degradation of a variety of macromolecules including proteins, carbohydrates, nucleic acids and lipids. The biogenesis of lysosomes or lysosome-related organelles requires a continuous substitution of soluble acid hydrolases and lysosomal membrane proteins. The targeting of lysosomal hydrolases depends on mannose 6-phosphate residues (M6P) that are recognized by specific receptors mediating their transport to an endosomal/prelysosomal compartment. The key role in the formation of M6P residues plays the GlcNAc-1-phosphotransferase localized in the Golgi apparatus. Two genes have been identified recently encoding the type III alpha/beta-subunit precursor membrane protein and the soluble gamma-subunit of GlcNAc-1-phosphotransferase. Mutations in these genes result in two severe diseases, mucolipidosis type II (MLII) and III (MLIII), biochemically characterized by the missorting of multiple lysosomal hydrolases due to impaired formation of the M6P recognition marker, and general lysosomal dysfunction. This review gives an update on structural properties, localization and functions of the GlcNAc-1-phosphotransferase subunits and improvements of pre- and postnatal diagnosis of ML patients. Further, the generation of recombinant single-chain antibody fragments against M6P residues and of new mouse models of MLII and MLIII will have considerable impact to provide deeper insight into the cell biology of lysosomal dysfunctions and the pathomechanisms underlying these lysosomal disorders.


Journal of Biological Chemistry | 2004

A Dileucine Motif and a Cluster of Acidic Amino Acids in the Second Cytoplasmic Domain of the Batten Disease-related CLN3 Protein Are Required for Efficient Lysosomal Targeting

Stephan Storch; Sandra Pohl; Thomas Braulke

The juvenile form of ceroid lipofuscinosis (Batten disease) is a neurodegenerative lysosomal storage disorder caused by mutations in the CLN3 gene. CLN3 encodes a multimembrane-spanning protein of unknown function, which is mainly localized in lysosomes in non-neuronal cells and in endosomes in neuronal cells. For this study we constructed chimeric proteins of three CLN3 cytoplasmic domains fused to the lumenal and transmembrane domains of the reporter proteins LAMP-1 and lysosomal acid phosphatase to identify lysosomal targeting motifs and to determine the intracellular transport and subcellular localization of the chimera in transfected cell lines. We report that a novel type of dileucine-based sorting motif, EEEX8LI, present in the second cytoplasmic domain of CLN3, is sufficient for proper targeting to lysosomes. The first cytoplasmic domain of CLN3 and the mutation of the dileucine motif resulted in a partial missorting of chimeric proteins to the plasma membrane. At equilibrium, 4-13% of the different chimera are present at the cell surface. Analysis of lysosome-specific proteolytic processing revealed that lysosomal acid phosphatase chimera containing the second cytoplasmic domain of CLN3 showed the highest rate of lysosomal delivery, whereas the C terminus of CLN3 was found to be less efficient in lysosomal targeting. However, none of these cytosolic CLN3 domains was able to interact with AP-1, AP-3, or GGA3 adaptor complexes. These data revealed that lysosomal sorting motifs located in an intramolecular cytoplasmic domain of a multimembrane-spanning protein have different structural requirements for adaptor binding than sorting signals found in the C-terminal cytoplasmic domains of single- or dual-spanning lysosomal membrane proteins.


Biological Chemistry | 2009

Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases

Sandra Pohl; Katrin Marschner; Stephan Storch; Thomas Braulke

Abstract Lysosomes contain more than 50 soluble hydrolases that are targeted to lysosomes in a mannose 6-phosphate (Man6P)-dependent manner. The phosphorylation of man- nose residues on high mannose-type oligosaccharides of newly synthesized lysosomal enzymes is catalyzed by two multimeric enzymes, GlcNAc-1-phosphotransferase and GlcNAc-1-phosphodiester-α-N-acetylglucosaminidase, allowing the binding to two distinct Man6P receptors in the Golgi apparatus. Inherited defects in the GlcNAc-1-phosphotransferase complex result in missorting and cellular loss of lysosomal enzymes, and the subsequent lysosomal dysfunction causes the lysosomal storage disorders mucolipidosis types II and III. Biosynthetic studies and the availability of Man6P receptor-deficient mouse models have provided new insights into the structural requirements for preferential binding of subsets of lysosomal enzymes to Man6P receptors as well as the identification of alternative targeting pathways.


Human Mutation | 2009

Identification and molecular characterization of six novel mutations in the UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit ( GNPTG) gene in patients with mucolipidosis III gamma

Emanuele Persichetti; Nadia Chuzhanova; Andrea Dardis; Barbara Tappino; Sandra Pohl; Nicholas Stuart Tudor Thomas; Camillo Rosano; Chiara Balducci; Silvia Paciotti; Silvia Dominissini; Anna Lisa E. Montalvo; Michela Sibilio; Rossella Parini; Miriam Rigoldi; Maja Di Rocco; Giancarlo Parenti; Aldo Orlacchio; Bruno Bembi; David Neil Cooper; Mirella Filocamo; Tommaso Beccari

Mucolipidosis type III (MLIII) is an autosomal recessive disorder affecting lysosomal hydrolase trafficking. In a study of 10 patients from seven families with a clinical phenotype and enzymatic diagnosis of MLIII, six novel GNPTG gene mutations were identified. These included missense (p.T286M) and nonsense (p.W111X) mutations and a transition in the obligate AG‐dinucleotide of the intron 8 acceptor splice site (c.610–2A>G). Three microdeletions were also identified, two of which (c.611delG and c.640_667del28) were located within the coding region whereas one (c.609+28_610‐16del) was located entirely within intron 8. RT‐PCR analysis of the c.610–2A>G transition demonstrated that the change altered splicing, leading to the production of two distinct aberrantly spliced forms, viz. the skipping of exon 9 (p.G204_K247del) or the retention of introns 8 and 9 (p.G204VfsX28). RT‐PCR analysis, performed on a patient homozygous for the intronic deletion (c.609+28_610‐16del), failed to detect any GNPTG RNA transcripts. To determine whether c.609+28_610‐16del allele‐derived transcripts were subject to nonsense‐mediated mRNA decay (NMD), patient fibroblasts were incubated with the protein synthesis inhibitor anisomycin. An RT‐PCR fragment retaining 43 bp of intron 8 was consistently detected suggesting that the 33‐bp genomic deletion had elicited NMD. Quantitative real‐time PCR and GNPTG western blot analysis confirmed that the homozygous microdeletion p.G204VfsX17 had elicited NMD resulting in failure to synthesize GNPTG protein. Analysis of the sequences surrounding the microdeletion breakpoints revealed either intrinsic repetitivity of the deleted region or short direct repeats adjacent to the breakpoint junctions. This is consistent with these repeats having mediated the microdeletions via replication slippage and supports the view that the mutational spectrum of the GNPTG gene is strongly influenced by the properties of the local DNA sequence environment. Hum Mutat 30:1–7, 2009.


Journal of Inherited Metabolic Disease | 2008

Molecular analysis of the GlcNac-1-phosphotransferase.

Thomas Braulke; Sandra Pohl; Stephan Storch

SummaryModification of the carbohydrate chains of soluble lysosomal enzymes with mannose 6-phosphate residues is a prerequisite for their mannose 6-phosphate receptor-dependent transport to lysosomes. GlcNac-1-phosphotransferase localized in the Golgi apparatus represents a hexameric α2β2γ2 subunit complex and plays a key role in the formation of the mannose 6-phosphate recognition marker. Defects in the GlcNac-1-phosphotransferase complex cause two diseases, mucolipidosis type II and III, which are characterized by missorting and cellular loss of lysosomal enzymes, and lysosomal accumulation of storage material. The recent identification of two genes, GNPTAB and GNPTG, encoding the three subunits of GlcNac-1-phosphotransferase leads to an improvement of both pre- and postnatal diagnosis of affected individuals, and permits the analysis of structural requirements for efficient formation of mannose 6-phosphate residues on lysosomal enzymes. The α/β subunits precursor matures by proteolytic cleavage and contains the catalytic activity as well as the capability to recognize lysosomal enzymes. The role of the γ-subunits for activity, stability and oligomerization of the GlcNac-1-phosphotransferase subunits is still unclear.


Molecular Medicine | 2011

Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease.

Anne-Hélène Lebrun; Parisa Moll-Khosrawi; Sandra Pohl; Georgia Makrypidi; Stephan Storch; Dirk Kilian; Thomas Streichert; Benjamin Otto; Sara E. Mole; Kurt Ullrich; Susan L. Cotman; Alfried Kohlschütter; Thomas Braulke; Angela Schulz

Mutations in the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis, a pediatric neurodegenerative disorder characterized by visual loss, epilepsy and psychomotor deterioration. Although most CLN3 patients carry the same 1-kb deletion in the CLN3 gene, their disease phenotype can be variable. The aims of this study were to (i) study the clinical phenotype in CLN3 patients with identical genotype, (ii) identify genes that are dysregulated in CLN3 disease regardless of the clinical course that could be useful as biomarkers, and (iii) find modifier genes that affect the progression rate of the disease. A total of 25 CLN3 patients homozygous for the 1-kb deletion were classified into groups with rapid, average or slow disease progression using an established clinical scoring system. Genome-wide expression profiling was performed in eight CLN3 patients with different disease progression and matched controls. The study showed high phenotype variability in CLN3 patients. Five genes were dysregulated in all CLN3 patients and present candidate biomarkers of the disease. Of those, dual specificity phosphatase 2 (DUSP2) was also validated in acutely CLN3-depleted cell models and in CbCln3Δex7/8 cerebellar precursor cells. A total of 13 genes were upregulated in patients with rapid disease progression and downregulated in patients with slow disease progression; one gene showed dysregulation in the opposite way. Among these potential modifier genes, guanine nucleotide exchange factor 1 for small GTPases of the Ras family (RAPGEF1) and transcription factor Spi-B (SPIB) were validated in an acutely CLN3-depleted cell model. These findings indicate that differential perturbations of distinct signaling pathways might alter disease progression and provide insight into the molecular alterations underlying neuronal dysfunction in CLN3 disease and neurodegeneration in general.


Biochimica et Biophysica Acta | 2009

Compensatory expression of human N-Acetylglucosaminyl-1-phosphotransferase subunits in mucolipidosis type III gamma

Sandra Pohl; Stephan Tiede; Monica Castrichini; Michael Cantz; Volkmar Gieselmann; Thomas Braulke

The N-Acetylglucosaminyl-1-phosphotransferase plays a key role in the generation of mannose 6-phosphate (M6P) recognition markersessential for efficient transport of lysosomal hydrolases to lysosomes. The phosphotransferase is composed of six subunits (alpha2, beta2, gamma2). The alpha- and beta-subunits are catalytically active and encoded by a single gene, GNPTAB, whereas the gamma-subunit encoded by GNPTG is proposed to recognize conformational structures common to lysosomal enzymes. Defects in GNPTG cause mucolipidosis type III gamma, which is characterized by missorting and cellular loss of lysosomal enzymes leading to lysosomal accumulation of storage material. Using plasmon resonance spectrometry, we showed that recombinant gamma-subunit failed to bind the lysosomal enzyme arylsulfatase A. Additionally, the overexpression of the gamma-subunit in COS7 cells did not result in hypersecretion of newly synthesized lysosomal enzymes expected for competition for binding sites of the endogenous phosphotransferase complex. Analysis of fibroblasts exhibiting a novel mutation in GNPTG (c.619insT, p.K207IfsX7) revealed that the expression of GNPTAB was increased whereas in gamma-subunit overexpressing cells the GNPTAB mRNA was reduced. The data suggest that the gamma-subunit is important for the balance of phosphotransferase subunits rather for general binding of lysosomal enzymes.


Human Mutation | 2014

Mucolipidosis II-Related Mutations Inhibit the Exit from the Endoplasmic Reticulum and Proteolytic Cleavage of GlcNAc-1-Phosphotransferase Precursor Protein (GNPTAB)

Raffaella De Pace; Maria Francisca Coutinho; Friedrich Koch-Nolte; Friedrich Haag; Maria João Prata; Sandra Alves; Thomas Braulke; Sandra Pohl

Mucolipidosis (ML) II and MLIII alpha/beta are two pediatric lysosomal storage disorders caused by mutations in the GNPTAB gene, which encodes an α/β‐subunit precursor protein of GlcNAc‐1‐phosphotransferase. Considerable variations in the onset and severity of the clinical phenotype in these diseases are observed. We report here on expression studies of two missense mutations c.242G>T (p.Trp81Leu) and c.2956C>T (p.Arg986Cys) and two frameshift mutations c.3503_3504delTC (p.Leu1168GlnfsX5) and c.3145insC (p.Gly1049ArgfsX16) present in severely affected MLII patients, as well as two missense mutations c.1196C>T (p.Ser399Phe) and c.3707A>T (p.Lys1236Met) reported in more mild affected individuals. We generated a novel α‐subunit‐specific monoclonal antibody, allowing the analysis of the expression, subcellular localization, and proteolytic activation of wild‐type and mutant α/β‐subunit precursor proteins by Western blotting and immunofluorescence microscopy. In general, we found that both missense and frameshift mutations that are associated with a severe clinical phenotype cause retention of the encoded protein in the endoplasmic reticulum and failure to cleave the α/β‐subunit precursor protein are associated with a severe clinical phenotype with the exception of p.Ser399Phe found in MLIII alpha/beta. Our data provide new insights into structural requirements for localization and activity of GlcNAc‐1‐phosphotransferase that may help to explain the clinical phenotype of MLII patients.


Journal of Biological Chemistry | 2010

Proteolytic Processing of the γ-Subunit Is Associated with the Failure to Form GlcNAc-1-phosphotransferase Complexes and Mannose 6-Phosphate Residues on Lysosomal Enzymes in Human Macrophages

Sandra Pohl; Stephan Tiede; Katrin Marschner; Marisa Encarnação; Monica Castrichini; Katrin Kollmann; Nicole Muschol; Kurt Ullrich; Sven Müller-Loennies; Thomas Braulke

GlcNAc-1-phosphotransferase is a Golgi-resident 540-kDa complex of three subunits, α2β2γ2, that catalyze the first step in the formation of the mannose 6-phosphate (M6P) recognition marker on lysosomal enzymes. Anti-M6P antibody analysis shows that human primary macrophages fail to generate M6P residues. Here we have explored the sorting and intracellular targeting of cathepsin D as a model, and the expression of the GlcNAc-1-phosphotransferase complex in macrophages. Newly synthesized cathepsin D is transported to lysosomes in an M6P-independent manner in association with membranes whereas the majority is secreted. Realtime PCR analysis revealed a 3–10-fold higher GlcNAc-1-phosphotransferase subunit mRNA levels in macrophages than in fibroblasts or HeLa cells. At the protein level, the γ-subunit but not the β-subunit was found to be proteolytically cleaved into three fragments which form irregular 97-kDa disulfide-linked oligomers in macrophages. Size exclusion chromatography showed that the γ-subunit fragments lost the capability to assemble with other GlcNAc-1-phosphotransferase subunits to higher molecular complexes. These findings demonstrate that proteolytic processing of the γ-subunit represents a novel mechanism to regulate GlcNAc-1-phosphotransferase activity and the subsequent sorting of lysosomal enzymes.

Collaboration


Dive into the Sandra Pohl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge