Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra R. Bacman is active.

Publication


Featured researches published by Sandra R. Bacman.


Nature Medicine | 2013

Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs

Sandra R. Bacman; Sion L. Williams; Milena Pinto; Susana Peralta; Carlos T. Moraes

Mitochondrial diseases are commonly caused by mutated mitochondrial DNA (mtDNA), which in most cases coexists with wild-type mtDNA, resulting in mtDNA heteroplasmy. We have engineered transcription activator-like effector nucleases (TALENs) to localize to mitochondria and cleave different classes of pathogenic mtDNA mutations. Mitochondria-targeted TALEN (mitoTALEN) expression led to permanent reductions in deletion or point-mutant mtDNA in patient-derived cells, raising the possibility that these mitochondrial nucleases can be therapeutic for some mitochondrial diseases.


The Journal of Neuroscience | 2005

Cytochrome c Association with the Inner Mitochondrial Membrane Is Impaired in the CNS of G93A-SOD1 Mice

Ilias G. Kirkinezos; Sandra R. Bacman; Dayami Hernandez; Jose Oca-Cossio; Laura J. Arias; Miguel A. Perez-Pinzon; Walter G. Bradley; Carlos T. Moraes

A “gain-of-function” toxic property of mutant Cu-Zn superoxide dismutase 1 (SOD1) is involved in the pathogenesis of some familial cases of amyotrophic lateral sclerosis (ALS). Expression of a mutant form of the human SOD1 gene in mice causes a degeneration of motor neurons, leading to progressive muscle weakness and hindlimb paralysis. Transgenic mice overexpressing a mutant human SOD1 gene (G93A-SOD1) were used to examine the mitochondrial involvement in familial ALS. We observed a decrease in mitochondrial respiration in brain and spinal cord of the G93A-SOD1 mice. This decrease was significant only at the last step of the respiratory chain (complex IV), and it was not observed in transgenic wild-type SOD1 and nontransgenic mice. Interestingly, this decrease was evident even at a very early age in mice, long before any clinical symptoms arose. The effect seemed to be CNS specific, because no decrease was observed in liver mitochondria. Differences in complex IV respiration between brain mitochondria of G93A-SOD1 and control mice were abolished when reduced cytochrome c was used as an electron donor, pinpointing the defect to cytochrome c. Submitochondrial studies showed that cytochrome c in the brain of G93A-SOD1 mice had a reduced association with the inner mitochondrial membrane (IMM). Brain mitochondrial lipids, including cardiolipin, had increased peroxidation in G93A-SOD1 mice. These results suggest a mechanism by which mutant SOD1 can disrupt the association of cytochrome c with the IMM, thereby priming an apoptotic program.


Cell | 2015

Selective Elimination of Mitochondrial Mutations in the Germline by Genome Editing

Pradeep Reddy; Alejandro Ocampo; Keiichiro Suzuki; Jinping Luo; Sandra R. Bacman; Sion L. Williams; Atsushi Sugawara; Daiji Okamura; Yuji Tsunekawa; Jun Wu; David Lam; Xiong Xiong; Nuria Montserrat; Concepcion Rodriguez Esteban; Guang-Hui Liu; Ignacio Sancho-Martinez; Dolors Manau; Salva Civico; Francesc Cardellach; Maria del Mar O’Callaghan; Jaime Campistol; Huimin Zhao; Josep M. Campistol; Carlos T. Moraes; Juan Carlos Izpisua Belmonte

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Lebers hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA. PAPERCLIP.


Nucleic Acids Research | 2009

Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks

Sandra R. Bacman; Sion L. Williams; Carlos T. Moraes

To investigate mtDNA recombination induced by multiple double strand breaks (DSBs) we used a mitochondria-targeted form of the ScaI restriction endonuclease to introduce DSBs in heteroplasmic mice and cells in which we were able to utilize haplotype differences to trace the origin of recombined molecules. ScaI cleaves multiple sites in each haplotype of the heteroplasmic mice (five in NZB and three in BALB mtDNA) and prolonged expression causes severe mtDNA depletion. After a short pulse of restriction enzyme expression followed by a long period of recovery, mitochondrial genomes with large deletions were detected by PCR. Curiously, we found that some ScaI sites were more commonly involved in recombined molecules than others. In intra-molecular recombination events, deletion breakpoints were close to or upstream of ScaI cleavage sites, confirming the recombinogenic character of DSBs in mtDNA. A region adjacent to the D-loop was preferentially involved in recombination of all molecules. Sequencing through NZB and BALB haplotype markers in recombined molecules enabled us to show that in addition to intra-molecular mtDNA recombination, rare inter-molecular mtDNA recombination events can also occur. This study underscores the role of DSBs in the generation of mtDNA rearrangements and supports the existence of recombination hotspots.


Gene Therapy | 2007

Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a ‘differential multiple cleavage-site’ model

Sandra R. Bacman; Siobhan Williams; Dayami Hernandez; Carlos T. Moraes

The ability to manipulate mitochondrial DNA (mtDNA) heteroplasmy would provide a powerful tool to treat mitochondrial diseases. Recent studies showed that mitochondria-targeted restriction endonucleases can modify mtDNA heteroplasmy in a predictable and efficient manner if it recognizes a single site in the mutant mtDNA. However, the applicability of such model is limited to mutations that create a novel cleavage site, not present in the wild-type mtDNA. We attempted to extend this approach to a ‘differential multiple cleavage site’ model, where an mtDNA mutation creates an extra restriction site to the ones normally present in the wild-type mtDNA. Taking advantage of a heteroplasmic mouse model harboring two haplotypes of mtDNA (NZB/BALB) and using adenovirus as a gene vector, we delivered a mitochondria-targeted Scal restriction endonuclease to different mouse tissues. Scal recognizes five sites in the NZB mtDNA but only three in BALB mtDNA. Our results showed that changes in mtDNA heteroplasmy were obtained by the expression of mitochondria-targeted ScaI in both liver, after intravenous injection, and in skeletal muscle, after intramuscular injection. Although mtDNA depletion was an undesirable side effect, our data suggest that under a regulated expression system, mtDNA depletion could be minimized and restriction endonucleases recognizing multiple sites could have a potential for therapeutic use.


Molecular Neurobiology | 2006

Mitochondrial involvement in amyotrophic lateral sclerosis: trigger or target?

Sandra R. Bacman; Walter G. Bradley; Carlos T. Moraes

Despite numerous reports demonstrating mitochondrial abnormalities associated with amyotrophic lateral sclerosis (ALS), the role of mitochondrial dysfunction in the disease onset and progression remains unknown. The intrinsic mitochondrial apoptotic program is activated in the central nervous system of mouse models of ALS harboring mutant superoxide dismutase 1 protein. This is associated with the release of cytochrome-c from the mitochondrial intermembrane space and mitochondrial swelling. However, it is unclear if the observed mitochondrial changes are caused by the decreasing cellular viability or if these changes precede and actually trigger apoptosis. This article discusses the current evidence for mitochondrial involvement in familial and sporadic ALS and concludes that mitochondria is likely to be both a trigger and a target in ALS and that their demise is a critical step in the motor neuron death.


Gene Therapy | 2010

Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease

Sandra R. Bacman; Sion L. Williams; Sofia Garcia; Carlos T. Moraes

Most pathogenic mtDNA mutations are heteroplasmic and there is a clear correlation between high levels of mutated mtDNA in a tissue and pathology. We have found that in vivo double-strand breaks (DSBs) in mtDNA lead to digestion of cleaved mtDNA and replication of residual mtDNA. Therefore, if DSB could be targeted to mutations in mtDNA, mutant genomes could be eliminated and the wild-type mtDNA would repopulate the cells. This can be achieved by using mitochondria-targeted restriction endonucleases as a means to degrade specific mtDNA haplotypes in heteroplasmic cells or tissues. In this work, we investigated the potential of systemic delivery of mitochondria-targeted restriction endonucleases to reduce the proportion of mutant mtDNA in specific tissues. Using the asymptomatic NZB/BALB mtDNA heteroplasmic mouse as a model, we found that a mitochondria-targeted ApaLI (that cleaves BALB mtDNA at a single site and does not cleave NZB mtDNA) increased the proportion of NZB mtDNA in target tissues. This was observed in heart, using a cardiotropic adeno-associated virus type-6 (AAV6) and in liver, using the hepatotropic adenovirus type-5 (Ad5). No mtDNA depletion or loss of cytochrome c oxidase activity was observed in any of these tissues. These results show the potential of systemic delivery of viral vectors to specific organs for the therapeutic application of mitochondria-targeted restriction enzymes in mtDNA disorders.


Developmental Disabilities Research Reviews | 2010

Emerging therapeutic approaches to mitochondrial diseases.

Tina Wenz; Sion L. Williams; Sandra R. Bacman; Carlos T. Moraes

Mitochondrial diseases are very heterogeneous and can affect different tissues and organs. Moreover, they can be caused by genetic defects in either nuclear or mitochondrial DNA as well as by environmental factors. All of these factors have made the development of therapies difficult. In this review article, we will discuss emerging approaches to the therapy of mitochondrial disorders, some of which are targeted to specific conditions whereas others may be applicable to a more diverse group of patients.


Gene Therapy | 2012

Manipulation of mtDNA heteroplasmy in all striated muscles of newborn mice by AAV9-mediated delivery of a mitochondria-targeted restriction endonuclease

Sandra R. Bacman; Sion L. Williams; Dongsheng Duan; Carlos T. Moraes

Mitochondrial diseases are frequently caused by heteroplasmic mitochondrial DNA (mtDNA) mutations. As these mutations express themselves only at high relative ratios, any approach able to manipulate mtDNA heteroplasmy can potentially be curative. In this study, we developed a system to manipulate mtDNA heteroplasmy in all skeletal muscles from neonate mice. We selected muscle because it is one of the most clinically affected tissues in mitochondrial disorders. A mitochondria-targeted restriction endonuclease (mito-ApaLI) expressed from AAV9 particles was delivered either by intraperitoneal or intravenous injection in neonate mice harboring two mtDNA haplotypes, only one of which was susceptible to ApaLI digestion. A single injection was able to elicit a predictable and marked change in mtDNA heteroplasmy in all striated muscles analyzed, including heart. No health problems or reduction in mtDNA levels were observed in treated mice, suggesting that this approach could have clinical applications for mitochondrial myopathies.


Molecular Therapy | 2015

MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases

Masami Hashimoto; Sandra R. Bacman; Susana Peralta; Marni J. Falk; Anne Chomyn; David C. Chan; Sion L. Williams; Carlos T. Moraes

We have designed mitochondrially targeted transcription activator-like effector nucleases or mitoTALENs to cleave specific sequences in the mitochondrial DNA (mtDNA) with the goal of eliminating mtDNA carrying pathogenic point mutations. To test the generality of the approach, we designed mitoTALENs to target two relatively common pathogenic mtDNA point mutations associated with mitochondrial diseases: the m.8344A>G tRNA(Lys) gene mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) and the m.13513G>A ND5 mutation associated with MELAS/Leigh syndrome. Transmitochondrial cybrid cells harbouring the respective heteroplasmic mtDNA mutations were transfected with the respective mitoTALEN and analyzed after different time periods. MitoTALENs efficiently reduced the levels of the targeted pathogenic mtDNAs in the respective cell lines. Functional assays showed that cells with heteroplasmic mutant mtDNA were able to recover respiratory capacity and oxidative phosphorylation enzymes activity after transfection with the mitoTALEN. To improve the design in the context of the low complexity of mtDNA, we designed shorter versions of the mitoTALEN specific for the MERRF m.8344A>G mutation. These shorter mitoTALENs also eliminated the mutant mtDNA. These reductions in size will improve our ability to package these large sequences into viral vectors, bringing the use of these genetic tools closer to clinical trials.

Collaboration


Dive into the Sandra R. Bacman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge