Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Y. Fukada is active.

Publication


Featured researches published by Sandra Y. Fukada.


Journal of Dental Research | 2007

Chemokines in Oral Inflammatory Diseases: Apical Periodontitis and Periodontal Disease

Tarcília Aparecida Silva; G. P. Garlet; Sandra Y. Fukada; João Santana da Silva; Fernando Q. Cunha

The inflammatory oral diseases are characterized by the persistent migration of polymorphonuclear leukocytes, monocytes, lymphocytes, plasma and mast cells, and osteoblasts and osteoclasts. In the last decade, there has been a great interest in the mediators responsible for the selective recruitment and activation of these cell types at inflammatory sites. Of these mediators, the chemokines have received particular attention in recent years. Chemokine messages are decoded by specific receptors that initiate signal transduction events, leading to a multitude of cellular responses, including chemotaxis and activation of inflammatory and bone cells. However, little is known about their role in the pathogenesis of inflammatory oral diseases. The purpose of this review is to summarize the findings regarding the role of chemokines in periapical and periodontal tissue inflammation, and the integration, into experimental models, of the information about the role of chemokines in human diseases.


Annals of the Rheumatic Diseases | 2010

IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy

Waldiceu A. Verri; Fabricio O. Souto; Silvio M. Vieira; Sérgio C. L. de Almeida; Sandra Y. Fukada; Damo Xu; José C. Alves-Filho; Thiago M. Cunha; Ana T. Guerrero; Rafaela B Mattos-Guimaraes; Fabíola Reis Oliveira; Mauro M. Teixeira; João S. Silva; Iain B. McInnes; Sérgio H. Ferreira; Paulo Louzada-Junior; Foo Y. Liew; Fernando Q. Cunha

Objectives Interleukin 33 (IL-33) is a new member of the IL-1 family of cytokines which signals via its receptor, ST2 (IL-33R), and has an important role in Th2 and mast cell responses. This study shows that IL-33 orchestrates neutrophil migration in arthritis. Methods and results Methylated bovine serum albumin (mBSA) challenge in the knee joint of mBSA-immunised mice induced local neutrophil migration accompanied by increased IL-33R and IL-33 mRNA expression. Cell migration was inhibited by systemic and local treatments with soluble (s)IL-33R, an IL-33 decoy receptor, and was not evident in IL-33R-deficient mice. IL-33 injection also induced IL-33R-dependent neutrophil migration. Antigen- and IL-33-induced neutrophil migration in the joint was dependent on CXCL1, CCL3, tumour necrosis factor α (TNFα) and IL-1β synthesis. Synovial tissue, macrophages and activated neutrophils expressed IL-33R. IL-33 induces neutrophil migration by activating macrophages to produce chemokines and cytokines and by directly acting on neutrophils. Importantly, neutrophils from patients with rheumatoid arthritis successfully treated with anti-TNFα antibody (infliximab) expressed significantly lower levels of IL-33R than patients treated with methotrexate alone. Only neutrophils from patients treated with methotrexate alone or from normal donors stimulated with TNFα responded to IL-33 in chemotaxis. Conclusions These results suggest that suppression of IL-33R expression in neutrophils, preventing IL-33-induced neutrophil migration, may be an important mechanism of anti-TNFα therapy of inflammation.


European Journal of Immunology | 2012

IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages

Hui-Rong Jiang; Marija Milovanovic; Debbie Allan; Wanda Niedbala; Anne-Galle Besnard; Sandra Y. Fukada; José C. Alves-Filho; Dieudonnée Togbe; Carl S. Goodyear; Christopher Linington; Damo Xu; Miodrag L. Lukic; Foo Y. Liew

Interleukin (IL)‐33, a member of the IL‐1 cytokine family, is an important modulator of the immune system associated with several immune‐mediated disorders. High levels of IL‐33 are expressed by the central nervous system (CNS) suggesting a potential role of IL‐33 in autoimmune CNS diseases. We have investigated the expression and function of IL‐33 in the development of experimental autoimmune encephalomyelitis (EAE) in mice. We report here that IL‐33 and its receptor ST2 (IL‐33Rα) are highly expressed in spinal cord tissue, and ST2 expression is markedly increased in the spinal cords of mice with EAE. Furthermore, ST2‐deficient (ST2−/−) mice developed exacerbated EAE compared with wild‐type (WT) mice while WT, but not ST2−/− EAE mice treated with IL‐33 developed significantly attenuated disease. IL‐33‐treated mice had reduced levels of IL‐17 and IFN‐γ but produced increased amounts of IL‐5 and IL‐13. Lymph node and splenic macrophages of IL‐33‐treated mice showed polarization toward an alternatively activated macrophage (M2) phenotype with significantly increased frequency of MR+PD‐L2+ cells. Importantly, adoptive transfer of these IL‐33‐treated macrophages attenuated EAE development. Our data therefore demonstrate that IL‐33 plays a therapeutic role in autoimmune CNS disease by switching a predominantly pathogenic Th17/Th1 response to Th2 activity, and by polarization of anti‐inflammatory M2 macrophages.


Proceedings of the National Academy of Sciences of the United States of America | 2008

IL-33 mediates antigen-induced cutaneous and articular hypernociception in mice

Waldiceu A. Verri; Ana T. Guerrero; Sandra Y. Fukada; Daniel Augusto Rodrigues Valério; Thiago M. Cunha; Damo Xu; Sérgio H. Ferreira; Foo Y. Liew; Fernando Q. Cunha

IL-33, a new member of the IL-1 family, signals through its receptor ST2 and induces T helper 2 (Th2) cytokine synthesis and mediates inflammatory response. We have investigated the role of IL-33 in antigen-induced hypernociception. Recombinant IL-33 induced cutaneous and articular mechanical hypernociception in a time- and dose-dependent manner. The hypernociception was inhibited by soluble (s) ST2 (a decoy receptor of IL-33), IL-1 receptor antagonist (IL-1ra), bosentan [a dual endothelin (ET)A/ETB receptor antagonist], clazosentan (an ETA receptor antagonist), or indomethacin (a cyclooxygenase inhibitor). IL-33 induced hypernociception in IL-18−/− mice but not in TNFR1−/− or IFNγ−/− mice. The IL-33-induced hypernociception was not affected by blocking IL-15 or sympathetic amines (guanethidine). Furthermore, methylated BSA (mBSA)-induced cutaneous and articular mechanical hypernociception depended on TNFR1 and IFNγ and was blocked by sST2, IL-1ra, bosentan, clazosentan, and indomethacin. mBSA also induced significant IL-33 and ST2 mRNA expression. Importantly, we showed that mBSA induced hypernociception via the IL-33 → TNFα → IL-1β → IFNγ → ET-1 → PGE2 signaling cascade. These results therefore demonstrate that IL-33 is a key mediator of immune inflammatory hypernociception normally associated with a Th1 type of response, revealing a hitherto unrecognized function of IL-33 in a key immune pharmacological pathway that may be amenable to therapeutic intervention.


Journal of Immunology | 2009

Galectin-3 Deficiency Reduces the Severity of Experimental Autoimmune Encephalomyelitis

Hui-Rong Jiang; Zakeya Al Rasebi; Eric Mensah-Brown; Allen Shahin; Damo Xu; Carl S. Goodyear; Sandra Y. Fukada; Fu Tong Liu; Foo Y. Liew; Miodrag L. Lukic

Galectin-3 (Gal-3) is a member of the β-galactoside-binding lectin family and plays an important role in inflammation. However, the precise role of Gal-3 in autoimmune diseases remains obscure. We have investigated the functional role of Gal-3 in experimental autoimmune encephalomyelitis (EAE) following immunization with myelin oligodendrocyte glycoprotein (MOG)35–55 peptide. Gal-3 deficient (Gal-3−/−) mice developed significantly milder EAE and markedly reduced leukocyte infiltration in the CNS compared with similarly treated wild-type (WT) mice. Gal-3−/− mice also contained fewer monocytes and macrophages but more apoptotic cells in the CNS than did WT mice. Following Ag stimulation in vitro, lymph node cells from the immunized Gal-3−/− mice produced less IL-17 and IFN-γ than did those of the WT mice. In contrast, Gal-3−/− mice produced more serum IL-10, IL-5, and IL-13 and contained higher frequency of Foxp3+ regulatory T cells in the CNS than did the WT mice. Furthermore, bone marrow-derived dendritic cells from Gal-3−/− mice produced more IL-10 in response to LPS or bacterial lipoprotein than did WT marrow-derived dendritic cells. Moreover, Gal-3−/− dendritic cells induced Ag-specific T cells to produce more IL-10, IL-5, and IL-12, but less IL-17, than did WT dendritic cells. Taken together, our data demonstrate that Gal-3 plays an important disease-exacerbating role in EAE through its multifunctional roles in preventing cell apoptosis and increasing IL-17 and IFN-γ synthesis, but decreasing IL-10 production.


Arthritis & Rheumatism | 2008

CXCR2-Specific Chemokines Mediate Leukotriene B4-Dependent Recruitment of Neutrophils to Inflamed Joints in Mice With Antigen-Induced Arthritis

Renata Grespan; Sandra Y. Fukada; Henrique Lemos; Silvio M. Vieira; Marcelo Henrique Napimoga; Mauro M. Teixeira; Alasdair R. Fraser; Foo Y. Liew; Iain B. McInnes; Fernando Q. Cunha

OBJECTIVE To investigate the mechanism underlying neutrophil migration into the articular cavity in experimental arthritis and, by extension, human inflammatory synovitis. METHODS Antigen-induced arthritis (AIA) was generated in mice with methylated bovine serum albumin (mBSA). Migration assays and histologic analysis were used to evaluate neutrophil recruitment to knee joints. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay. Antibodies and pharmacologic inhibitors were used in vivo to determine the role of specific disease mediators. Samples of synovial tissue and synovial fluid from rheumatoid arthritis (RA) or osteoarthritis patients were evaluated for CXCL1 and CXCL5 expression. RESULTS High levels of CXCL1, CXCL5, and leukotriene B4 (LTB4) were expressed in the joints of arthritic mice. Confirming their respective functional roles, repertaxin (a CXCR1/CXCR2 receptor antagonist), anti-CXCL1 antibody, anti-CXCL5 antibody, and MK886 (a leukotriene synthesis inhibitor) reduced mBSA-induced neutrophil migration to knee joints. Repertaxin reduced LTB4 production in joint tissue, and neutrophil recruitment induced by CXCL1 or CXCL5 was inhibited by MK886, suggesting a sequential mechanism. Levels of both CXCL1 and CXCL5 were elevated in synovial fluid and were released in vitro by RA synovial tissues. Moreover, RA synovial fluid neutrophils stimulated with CXCL1 or CXCL5 released significant amounts of LTB4. CONCLUSION Our data implicate CXCL1, CXCL5, and LTB4, acting sequentially, in neutrophil migration in AIA. Elevated levels of CXCL1 and CXCL5 in the synovial compartment of RA patients provide robust comparative data indicating that this mechanism plays a role in inflammatory joint disease. Together, these results suggest that inhibition of CXCL1, CXCL5, or LTB4 may represent a potential therapeutic strategy in RA.


Oral Microbiology and Immunology | 2009

Factors involved in the T helper type 1 and type 2 cell commitment and osteoclast regulation in inflammatory apical diseases

Sandra Y. Fukada; Tarcília Aparecida Silva; G. P. Garlet; Adalberto Luiz Rosa; J. S. da Silva; Fernando Q. Cunha

INTRODUCTION Periapical chronic lesion formation involves activation of the immune response and alveolar bone resorption around the tooth apex. However, the overall roles of T helper type 1 (Th1), Th2, and T-regulatory cell (Treg) responses and osteoclast regulatory factors in periapical cysts and granulomas have not been fully determined. This study aimed to investigate whether different forms of apical periodontitis, namely cysts and granulomas, show different balances of Th1, Th2 regulators, Treg markers, and factors involved in osteoclast chemotaxis and activation. METHODS Gene expression of these factors was assessed using quantitative real-time polymerase chain reaction, in samples obtained from healthy gingiva (n = 8), periapical granulomas (n = 20), and cysts (n = 10). RESULTS Periapical cysts exhibited a greater expression of GATA-3, while a greater expression of T-bet, Foxp3, and interleukin-10 (IL-10) was seen in granulomas. The expression of interferon-gamma, IL-4, and transforming growth factor-beta was similar in both lesions. Regarding osteoclastic factors, while the expression of SDF-1alpha/CXCL12 and CCR1 was higher in cysts, the expression of RANKL was significantly higher in granulomas. Both lesions exhibited similar expression of CXCR4, CKbeta8/CCL23, and osteoprotegerin, which were significantly higher than in control. CONCLUSION Our results showed a predominance of osteoclast activity in granulomas that was correlated with the Th1 response. The concomitant expression of Treg cell markers suggests a possible suppression of the Th1 response in granulomas. On the other hand, in cysts the Th2 activity is augmented. The mechanisms of periradicular lesion development are still not fully understood but the imbalance of immune and osteoclastic cell activity in cysts and granulomas seems to be critically regulated by Treg cells.


Journal of Immunology | 2008

Hydrogen sulfide augments neutrophil migration through enhancement of adhesion molecule expression and prevention of CXCR2 internalization: role of ATP-sensitive potassium channels.

Daniela Dal-Secco; Thiago M. Cunha; Andressa Freitas; Jos Carlos Alves-Filho; Fabricio O. Souto; Sandra Y. Fukada; Renata Grespan; Nylane Maria Nunes de Alencar; Alberto Federman Neto; Marcos A. Rossi; Sérgio H. Ferreira; John S. Hothersall; Fernando Q. Cunha

In this study, we have addressed the role of H2S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H2S synthesis inhibitors, dl-propargylglycine (PAG) or β-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H2S donors, NaHS or Lawesson’s reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-α, keratinocyte-derived chemokine, and LTB4. Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (KATP+) channel blocker, glybenclamide. Conversely, diazoxide, a KATP+ channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H2S augments neutrophil adhesion and locomotion, by a mechanism dependent on KATP+ channels.


Critical Care Medicine | 2010

Role of regulatory T cells in long-term immune dysfunction associated with severe sepsis.

Daniele C. Nascimento; José C. Alves-Filho; Fabiane Sônego; Sandra Y. Fukada; Marcelo S. F. Pereira; Claudia F. Benjamim; Dario S. Zamboni; João S. Silva; Fernando Q. Cunha

Objective:To investigate the role of regulatory T cells in the modulation of long-term immune dysfunction during experimental sepsis. It is well established that sepsis predisposes to development of a pronounced immunosuppression. Nevertheless, the mechanisms underlying the immune dysfunction after sepsis are still not well understood. Design:Prospective experimental study. Setting:University research laboratory. Interventions:Wild-type mice underwent cecal ligation and puncture and were treated with antibiotic during 3 days after surgery. On days 1, 7, or 15 after cecal ligation and puncture, the frequency of regulatory T cells, proliferation of CD4+ T cells and bacterial counts were evaluated. Fifteen days after cecal ligation and puncture, surviving mice underwent secondary pulmonary infection by intranasal inoculation of nonlethal dose of Legionella pneumophila. Some mice received agonistic glucocorticoid-induced tumor necrosis factor receptor antibody (DTA-1) before induction of secondary infection. Measurements and Main Results:Mice surviving cecal ligation and puncture showed a markedly increased frequency of regulatory T cells in thymus and spleen, which was associated with reduced proliferation of CD4+ T cells. Fifteen days after cecal ligation and puncture, all sepsis-surviving mice succumbed to nonlethal injection of L. pneumophila. Treatment of mice with DTA-1 antibody reduced frequency of regulatory T cells, restored CD4+ T cell proliferation, reduced the levels of bacteria in spleen, and markedly improved survival of L. pneumophila infection. Conclusion:These findings suggest that regulatory T cells play an important role in the progression and establishment of immune dysfunction observed in experimental sepsis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Regulation of type 17 helper T-cell function by nitric oxide during inflammation

Wanda Niedbala; José C. Alves-Filho; Sandra Y. Fukada; Silvio M. Vieira; Akio Mitani; Fabiane Sônego; Ananda S. Mirchandani; Daniele C. Nascimento; Fernando Q. Cunha; Foo Y. Liew

Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2−/−) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants.

Collaboration


Dive into the Sandra Y. Fukada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tarcília Aparecida Silva

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro M. Teixeira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Waldiceu A. Verri

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Mila Fernandes Moreira Madeira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge