Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandrine Henri is active.

Publication


Featured researches published by Sandrine Henri.


Journal of Experimental Medicine | 2002

Mouse Plasmacytoid Cells: Long-lived Cells, Heterogeneous in Surface Phenotype and Function, that Differentiate Into CD8+ Dendritic Cells Only after Microbial Stimulus

Meredith O'Keeffe; Hubertus Hochrein; David Vremec; Irina Caminschi; Joanna L. Miller; E. Margot Anders; Li Wu; Mireille H. Lahoud; Sandrine Henri; Bernadette Scott; Paul J. Hertzog; Lilliana Tatarczuch; Ken Shortman

The CD45RAhiCD11cint plasmacytoid predendritic cells (p-preDCs) of mouse lymphoid organs, when stimulated in culture with CpG or influenza virus, produce large amounts of type I interferons and transform without division into CD8+CD205− DCs. P-preDCs express CIRE, the murine equivalent of DC-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN). P-preDCs are divisible by CD4 expression into two subgroups differing in turnover rate and in response to Staphylococcus aureus. The kinetics of bromodeoxyuridine labeling and the results of transfer to normal recipient mice indicate that CD4− p-preDCs are the immediate precursors of CD4+ p-preDCs. Similar experiments indicate that p-preDCs are normally long lived and are not the precursors of the short-lived steady-state conventional DCs. However, in line with the culture studies on transfer to influenza virus-stimulated mice the p-preDCs transform into CD8+CD205− DCs, distinct from conventional CD8+CD205+ DCs. Hence as well as activating preexistant DCs, microbial infection induces a wave of production of a new DC subtype. The functional implications of this shift in the DC network remain to be determined.


Journal of Experimental Medicine | 2013

Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF

Martin Guilliams; Ismé de Kleer; Sandrine Henri; Sijranke Post; Leen Vanhoutte; Sofie De Prijck; Kim Deswarte; Bernard Malissen; Hamida Hammad; Bart N. Lambrecht

Alveolar macrophages differentiate from fetal monocytes in a GM-CSF–dependent fashion and colonize the alveolar space within a few days after birth.


Journal of Experimental Medicine | 2007

The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells

Lionel Franz Poulin; Sandrine Henri; Béatrice de Bovis; Elisabeth Devilard; Adrien Kissenpfennig; Bernard Malissen

Langerhans cells (LCs) constitute a subset of dendritic cells (DCs) that express the lectin langerin and that reside in their immature state in epidermis. Paradoxically, in mice permitting diphtheria toxin (DT)–mediated ablation of LCs, epidermal LCs reappeared with kinetics that lagged behind that of their putative progeny found in lymph nodes (LNs). Using bone marrow (BM) chimeras, we showed that a major fraction of the langerin+, skin-derived DCs found in LNs originates from a developmental pathway that is independent from that of epidermal LCs. This pathway, the existence of which was unexpected, originates in the dermis and gives rise to langerin+ dermal DCs (DDCs) that should not be confused with epidermal LCs en route to LNs. It explains that after DT treatment, some langerin+, skin-derived DCs reappear in LNs long before LC-derived DCs. Using CD45 expression and BrdU-labeling kinetics, both LCs and langerin+ DDCs were found to coexist in wild-type mice. Moreover, DT-mediated ablation of epidermal LCs opened otherwise filled niches and permitted repopulation of adult noninflammatory epidermis with BM-derived LCs. Our results stress that the langerin+ DC network is more complex than originally thought and have implications for the development of transcutaneous vaccines and the improvement of humanized mouse models.


Nature Immunology | 2014

Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice

Calum C. Bain; Alberto Bravo-Blas; Charlotte L. Scott; Elisa Gomez Perdiguero; Frederic Geissmann; Sandrine Henri; Bernard Malissen; Lisa C. Osborne; David Artis; Allan McI. Mowat

The paradigm that macrophages that reside in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate-mapping models and monocytopenic mice, together with bone marrow chimera and parabiotic models, we found that embryonic precursor cells seeded the intestinal mucosa and demonstrated extensive in situ proliferation during the neonatal period. However, these cells did not persist in the intestine of adult mice. Instead, they were replaced around the time of weaning by the chemokine receptor CCR2–dependent influx of Ly6Chi monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool.


Journal of Experimental Medicine | 2010

CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells

Sandrine Henri; Lionel Franz Poulin; Samira Tamoutounour; Laurence Ardouin; Martin Guilliams; Béatrice de Bovis; Elisabeth Devilard; Christophe Viret; Hiroaki Azukizawa; Adrien Kissenpfennig; Bernard Malissen

Recent studies have challenged the view that Langerhans cells (LCs) constitute the exclusive antigen-presenting cells of the skin and suggest that the dermal dendritic cell (DDC) network is exceedingly complex. Using knockin mice to track and ablate DCs expressing langerin (CD207), we discovered that the dermis contains five distinct DC subsets and identified their migratory counterparts in draining lymph nodes. Based on this refined classification, we demonstrated that the quantitatively minor CD207+ CD103+ DDC subset is endowed with the unique capability of cross-presenting antigens expressed by keratinocytes irrespective of the presence of LCs. We further showed that Y-Ae, an antibody that is widely used to monitor the formation of complexes involving I-Ab molecules and a peptide derived from the I-E α chain, recognizes mature skin DCs that express I-Ab molecules in the absence of I-E α. Knowledge of this extra reactivity is important because it could be, and already has been, mistakenly interpreted to support the view that antigen transfer can occur between LCs and DDCs. Collectively, these data revisit the transfer of antigen that occurs between keratinocytes and the five distinguishable skin DC subsets and stress the high degree of functional specialization that exists among them.


European Journal of Immunology | 2012

CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis

Samira Tamoutounour; Sandrine Henri; Hugues Lelouard; Béatrice de Bovis; Colin de Haar; C. Janneke van der Woude; Andrea M. Woltman; Yasmin Reyal; Dominique Bonnet; Dorine Sichien; Calum C. Bain; Allan McI. Mowat; Caetano Reis e Sousa; Lionel Franz Poulin; Bernard Malissen; Martin Guilliams

Dendritic cells (DCs) and monocyte‐derived macrophages (MΦs) are key components of intestinal immunity. However, the lack of surface markers differentiating MΦs from DCs has hampered understanding of their respective functions. Here, we demonstrate that, using CD64 expression, MΦs can be distinguished from DCs in the intestine of both mice and humans. On that basis, we revisit the phenotype of intestinal DCs in the absence of contaminating MΦs and we delineate a developmental pathway in the healthy intestine that leads from newly extravasated Ly‐6Chi monocytes to intestinal MΦs. We determine how inflammation impacts this pathway and show that T cell‐mediated colitis is associated with massive recruitment of monocytes to the intestine and the mesenteric lymph node (MLN). There, these monocytes differentiate into inflammatory MΦs endowed with phagocytic activity and the ability to produce inducible nitric oxide synthase. In the MLNs, inflammatory MΦs are located in the T‐cell zone and trigger the induction of proinflammatory T cells. Finally, T cell‐mediated colitis develops irrespective of intestinal DC migration, an unexpected finding supporting an important role for MLN‐resident inflammatory MΦs in the etiology of T cell‐mediated colitis.


American Journal of Human Genetics | 1999

Severe Hepatic Fibrosis in Schistosoma mansoni Infection Is Controlled by a Major Locus That Is Closely Linked to the Interferon-γ Receptor Gene

Alain Dessein; Dominique Hillaire; Nasr Eldin Ma ElWali; Sandrine Marquet; Qurashi Mohamed-Ali; Adil Mirghani; Sandrine Henri; Ahmed A. Abdelhameed; Osman K. Saeed; Mubarak Magzoub; Laurent Abel

Lethal disease due to hepatic periportal fibrosis occurs in 2%-10% of subjects infected by Schistosoma mansoni in endemic regions such as Sudan. It is unknown why few infected individuals present with severe disease, and inherited factors may play a role in fibrosis development. Schistosoma mansoni infection levels have been shown to be controlled by a locus that maps to chromosome 5q31-q33. To investigate the genetic control of severe hepatic fibrosis (assessed by ultrasound examination) causing portal hypertension, a segregation analysis was performed in 65 Sudanese pedigrees from the same village. Results provide evidence for a codominant major gene, with.16 as the estimated allele A frequency predisposing to advanced periportal fibrosis. For AA males, AA females, and Aa males a 50% penetrance is reached after, respectively, 9, 14, and 19 years of residency in the area, whereas for other subjects the penetrance remains <.02 after 20 years of exposure. Linkage analysis performed in four candidate regions shows that this major locus maps to chromosome 6q22-q23 and that it is closely linked (multipoint LOD score 3.12) to the IFN-gammaR1 gene encoding the receptor of the strongly antifibrogenic cytokine interferon-gamma. These results show that infection levels and advanced hepatic fibrosis in human schistosomiasis are controlled by distinct loci; they suggest that polymorphisms within the IFN-gammaR1 gene could determine severe hepatic disease due to S. mansoni infection and that the IFN-gammaR1 gene is a strong candidate for the control of abnormal fibrosis observed in other diseases.


Nature Reviews Immunology | 2014

The origins and functions of dendritic cells and macrophages in the skin

Bernard Malissen; Samira Tamoutounour; Sandrine Henri

Immune cell populations in the skin are predominantly comprised of dendritic cells (DCs) and macrophages. A lack of consensus regarding how to define these cell types has hampered research in this area. In this Review, we focus on recent advances that, based on ontogeny and global gene-expression profiles, have succeeded in discriminating DCs from macrophages in the skin. We discuss how these studies have enabled researchers to revisit the origin, diversity and T cell-stimulatory properties of these cells, and have led to unifying principles that extend across tissues and species. By aligning the DC and macrophage subsets that are found in mouse skin with those that are present in human skin, these studies also provide crucial information for developing intradermal vaccines and for managing inflammatory skin conditions.


Journal of Clinical Investigation | 2009

IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani

Maira Galdino da Rocha Pitta; Audrey Romano; Sandrine Cabantous; Sandrine Henri; Awad Hammad; Bourema Kouriba; Laurent Argiro; Musa el Kheir; Bruno Bucheton; Charles Mary; Sayda El-Safi; Alain Dessein

IL-17 and IL-22 have been shown to increase protection against certain bacteria and fungal pathogens in experimental models. However, no human studies have demonstrated a crucial role of IL-17 and IL-22 in protection against infections. We show here that Leishmania donovani, which can cause the lethal visceral disease Kala Azar (KA), stimulates the differentiation of Th17 cells, which produce IL-17, IL-22, and IFN-gamma. Analysis of Th1, Th2, and Th17 cytokine responses by cultured PBMCs from individuals in a cohort of subjects who developed KA or were protected against KA during a severe outbreak showed that IL-17 and IL-22 were strongly and independently associated with protection against KA. Our results suggest that, along with Th1 cytokines, IL-17 and IL-22 play complementary roles in human protection against KA, and that a defect in Th17 induction may increase the risk of KA.


Journal of Experimental Medicine | 2014

Progressive replacement of embryo-derived cardiac macrophages with age

Kaaweh Molawi; Yochai Wolf; Prashanth K. Kandalla; Jeremy Favret; Nora Hagemeyer; Kathrin Frenzel; Alexander R. Pinto; Kay Klapproth; Sandrine Henri; Bernard Malissen; Hans Reimer Rodewald; Nadia Rosenthal; Marc Bajénoff; Marco Prinz; Steffen Jung; Michael H. Sieweke

Molawi et al. examine the origin and cellular dynamics of macrophages in the heart during postnatal development. Cardiac macrophages derived from CX3CR1+ embryonic progenitors persist into adulthood, but the contribution of these cells to resident macrophages declines after birth with diminished self-renewal as the mice age. Over time, the heart is progressively reconstituted with bone marrow–derived macrophages, even in the absence of inflammation.

Collaboration


Dive into the Sandrine Henri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Dalod

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hervé Luche

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Bjarne Bogen

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Even Fossum

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge