Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandrine Jayne is active.

Publication


Featured researches published by Sandrine Jayne.


Nature Genetics | 2014

A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia.

Helen E. Speedy; Maria Chiara Di Bernardo; Georgina P. Sava; Martin J. S. Dyer; Amy Holroyd; Yufei Wang; Nicola J. Sunter; Larry Mansouri; Gunnar Juliusson; Karin E. Smedby; Göran Roos; Sandrine Jayne; Aneela Majid; Claire Dearden; Andrew G. Hall; Tryfonia Mainou-Fowler; Graham Jackson; Geoffrey Summerfield; Robert J. Harris; Andrew R. Pettitt; David Allsup; James R Bailey; Guy Pratt; Chris Pepper; Chris Fegan; Richard Rosenquist; Daniel Catovsky; James M. Allan; Richard S. Houlston

Genome-wide association studies (GWAS) of chronic lymphocytic leukemia (CLL) have shown that common genetic variation contributes to the heritable risk of CLL. To identify additional CLL susceptibility loci, we conducted a GWAS and performed a meta-analysis with a published GWAS totaling 1,739 individuals with CLL (cases) and 5,199 controls with validation in an additional 1,144 cases and 3,151 controls. A combined analysis identified new susceptibility loci mapping to 3q26.2 (rs10936599, P = 1.74 × 10−9), 4q26 (rs6858698, P = 3.07 × 10−9), 6q25.2 (IPCEF1, rs2236256, P = 1.50 × 10−10) and 7q31.33 (POT1, rs17246404, P = 3.40 × 10−8). Additionally, we identified a promising association at 5p15.33 (CLPTM1L, rs31490, P = 1.72 × 10−7) and validated recently reported putative associations at 5p15.33 (TERT, rs10069690, P = 1.12 × 10−10) and 8q22.3 (rs2511714, P = 2.90 × 10−9). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CLL.


Leukemia | 2015

A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact.

Ana C. Queirós; Neus Villamor; Guillem Clot; Alejandra Martínez-Trillos; Marta Kulis; Arcadi Navarro; Eva Maria Murga Penas; Sandrine Jayne; Aneela Majid; Julia Richter; Anke K. Bergmann; J Kolarova; Cristina Royo; Nuria Russiñol; Giancarlo Castellano; M Pinyol; Sílvia Beà; Itziar Salaverria; Mónica López-Guerra; Dolors Colomer; M. Aymerich; María Rozman; Julio Delgado; Eva Giné; Marcos González-Díaz; Xose S. Puente; Reiner Siebert; Martin J. S. Dyer; Carlos López-Otín; Rozman C

Prospective identification of patients with chronic lymphocytic leukemia (CLL) destined to progress would greatly facilitate their clinical management. Recently, whole-genome DNA methylation analyses identified three clinicobiologic CLL subgroups with an epigenetic signature related to different normal B-cell counterparts. Here, we developed a clinically applicable method to identify these subgroups and to study their clinical relevance. Using a support vector machine approach, we built a prediction model using five epigenetic biomarkers that was able to classify CLL patients accurately into the three subgroups, namely naive B-cell-like, intermediate and memory B-cell-like CLL. DNA methylation was quantified by highly reproducible bisulfite pyrosequencing assays in two independent CLL series. In the initial series (n=211), the three subgroups showed differential levels of IGHV (immunoglobulin heavy-chain locus) mutation (P<0.001) and VH usage (P<0.03), as well as different clinical features and outcome in terms of time to first treatment (TTT) and overall survival (P<0.001). A multivariate Cox model showed that epigenetic classification was the strongest predictor of TTT (P<0.001) along with Binet stage (P<0.001). These findings were corroborated in a validation series (n=97). In this study, we developed a simple and robust method using epigenetic biomarkers to categorize CLLs into three subgroups with different clinicobiologic features and outcome.


Genes, Chromosomes and Cancer | 2014

Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia.

Anke K. Bergmann; Sina Schneppenheim; Marc Seifert; Matthew J. Betts; Andrea Haake; Cristina López; Eva Maria Murga Penas; Inga Vater; Sandrine Jayne; Martin J. S. Dyer; Martin Schrappe; Ulrich Dührsen; Ole Ammerpohl; Robert B. Russell; Ralf Küppers; Jan Dürig; Reiner Siebert

T‐cell prolymphocytic leukemia (T‐PLL) is an aggressive post‐thymic T‐cell malignancy characterized by the recurrent inv(14)(q11q32)/t(14;14)(q11;q32) or t(X;14)(q28;q11) leading to activation of either the TCL1 or MTCP1 gene, respectively. However, these primary genetic events are insufficient to drive leukemogenesis. Recently, activating mutations in JAK3 have been identified in other T‐cell malignancies. Since JAK3 is essential for T‐cell maturation, we analyzed a cohort of 32 T‐PLL patients for mutational hot spots in the JAK3 gene using a step‐wise screening approach. We identified 14 mutations in 11 of 32 patients (34%). The most frequently detected mutation in our cohort was M511I (seen in 57% of cases) previously described as an activating change in other T‐cell malignancies. Three patients carried two mutations in JAK3. In two patients M511I and R657Q were simultaneously detected and in another patient V674F and V678L. In the latter case we could demonstrate that the mutations were on the same allele in cis. Protein modeling and homology analyses of mutations present in other members of the JAK family suggested that these mutations likely activate JAK3, possibly by disrupting the activation loop and the interface between N and C lobes, increasing the accessibility of the catalytic loop. In addition, four of the 21 patients lacking a JAK3 point mutation presented an aberrant karyotype involving the chromosomal band 19p13 harboring the JAK3 locus. The finding of recurrent activating JAK3 mutations in patients with T‐PLL could enable the use of JAK3 inhibitors to treat patients with this unfavorable malignancy who otherwise have a very poor prognosis.


Blood | 2015

Recurrent CDKN1B (p27) mutations in hairy cell leukemia.

Sascha Dietrich; Jennifer Hüllein; Stanley Chun-Wei Lee; Barbara Hutter; David Gonzalez; Sandrine Jayne; Martin J. S. Dyer; Małgorzata Oleś; Monica Else; Xiyang Liu; Mikolaj Slabicki; Bian Wu; Xavier Troussard; Jan Dürig; Mindaugas Andrulis; Claire Dearden; Christof von Kalle; Martin Granzow; Anna Jauch; Stefan Fröhling; Wolfgang Huber; Manja Meggendorfer; Torsten Haferlach; Anthony D. Ho; Daniela Richter; Benedikt Brors; Hanno Glimm; Estella Matutes; Omar Abdel Wahab; Thorsten Zenz

Hairy cell leukemia (HCL) is marked by near 100% mutational frequency of BRAFV600E mutations. Recurrent cooperating genetic events that may contribute to HCL pathogenesis or affect the clinical course of HCL are currently not described. Therefore, we performed whole exome sequencing to explore the mutational landscape of purine analog refractory HCL. In addition to the disease-defining BRAFV600E mutations, we identified mutations in EZH2, ARID1A, and recurrent inactivating mutations of the cell cycle inhibitor CDKN1B (p27). Targeted deep sequencing of CDKN1B in a larger cohort of HCL patients identify deleterious CDKN1B mutations in 16% of patients with HCL (n = 13 of 81). In 11 of 13 patients the CDKN1B mutation was clonal, implying an early role of CDKN1B mutations in the pathogenesis of HCL. CDKN1B mutations were not found to impact clinical characteristics or outcome in this cohort. These data identify HCL as having the highest frequency of CDKN1B mutations among cancers and identify CDNK1B as the second most common mutated gene in HCL. Moreover, given the known function of CDNK1B, these data suggest a novel role for alterations in regulation of cell cycle and senescence in HCL with CDKN1B mutations.


British Journal of Haematology | 2016

Genes encoding members of the JAK-STAT pathway or epigenetic regulators are recurrently mutated in T-cell prolymphocytic leukaemia.

Cristina López; Anke K. Bergmann; Paul U; Murga Penas Em; Inga Nagel; Matthew J. Betts; Johansson P; Ritgen M; Tycho Baumann; M. Aymerich; Sandrine Jayne; Robert B. Russell; Elias Campo; Martin J. S. Dyer; Jan Dürig; Reiner Siebert

T‐cell prolymphocytic leukaemia (T‐PLL) is an aggressive leukaemia. The primary genetic alteration in T‐PLL are the inv(14)(q11q32)/t(14;14)(q11;q32) leading to TRD/TRA‐TCL1A fusion, or the t(X;14)(q28;q11) associated with TRD/TRA‐MTCP1 fusion. However, additional cooperating abnormalities are necessary for emergence of the full neoplastic phenotype. Though the pattern of secondary chromosomal aberrations is remarkably conserved, targets of the changes are largely unknown. We analysed a cohort of 43 well‐characterized T‐PLL for hotspot mutations in the genes JAK3, STAT5B and RHOA. Additionally, we selected a subset of 23 T‐PLL cases for mutational screening of 54 genes known to be recurrently mutated in T‐cell and other haematological neoplasms. Activating mutations in the investigated regions of the JAK3 and STAT5B genes were detected in 30% (13/43) and 21% (8/39) of the cases, respectively, and were mutually exclusive. Further, we identified mutations in the genes encoding the epigenetic regulators EZH2 in 13% (3/23), TET2 in 17% (4/23) and BCOR in 9% (2/23) of the cases. We confirmed that the JAK‐STAT pathway is a major mutational target, and identified epigenetic regulators recurrently mutated in T‐PLL. These findings complement the mutational spectrum of secondary aberrations in T‐PLL and underscore the potential therapeutical relevance of epigenetic regulators in T‐PLL.


Blood | 2016

Germline mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia.

Helen E. Speedy; Ben Kinnersley; Daniel Chubb; Peter Broderick; Philip J. Law; Kevin Litchfield; Sandrine Jayne; Martin J. S. Dyer; Claire Dearden; George A. Follows; Daniel Catovsky; Richard S. Houlston

Chronic lymphocytic leukemia (CLL) can be familial; however, thus far no rare germ line disruptive alleles for CLL have been identified. We performed whole-exome sequencing of 66 CLL families, identifying 4 families where loss-of-function mutations in protection of telomeres 1 (POT1) co-segregated with CLL. The p.Tyr36Cys mutation is predicted to disrupt the interaction between POT1 and the telomeric overhang. The c.1164-1G>A splice-site, p.Gln358SerfsTer13 frameshift, and p.Gln376Arg missense mutations are likely to impact the interaction between POT1 and adrenocortical dysplasia homolog (ACD), which is a part of the telomere-capping shelterin complex. We also identified mutations in ACD (c.752-2A>C) and another shelterin component, telomeric repeat binding factor 2, interacting protein (p.Ala104Pro and p.Arg133Gln), in 3 CLL families. In a complementary analysis of 1083 cases and 5854 controls, the POT1 p.Gln376Arg variant, which has a global minor allele frequency of 0.0005, conferred a 3.61-fold increased risk of CLL (P = .009). This study further highlights telomere dysregulation as a key process in CLL development.


Leukemia | 2015

Common variation at 12q24.13 (OAS3) influences chronic lymphocytic leukemia risk

Georgina P. Sava; Helen E. Speedy; M C Di Bernardo; Martin J. S. Dyer; Amy Holroyd; Nicola J. Sunter; Helen Marr; Larry Mansouri; Silvia Deaglio; Lidia Karabon; Irena Frydecka; Krzysztof Jamroziak; Dariusz Woszczyk; Gunnar Juliusson; Karin E. Smedby; Sandrine Jayne; Aneela Majid; Yunfei Wang; Claire Dearden; Andrew G. Hall; Tryfonia Mainou-Fowler; Graham Jackson; Geoffrey Summerfield; Robert J. Harris; Andrew R. Pettitt; David Allsup; James R Bailey; Guy Pratt; Chris Pepper; Chris Fegan

Chronic lymphocytic leukemia (CLL) is the most common form of lymphoid malignancy in Western countries1. Recent multi-stage genome-wide association studies (GWAS) have shown that part of the eight-fold increased risk of CLL seen in first-degree relatives of patients can be ascribed to the co-inheritance of multiple low-risk variants.2, 3, 4, 5, 6


British Journal of Haematology | 2013

Precision medicines for B-cell leukaemias and lymphomas; progress and potential pitfalls.

Martin J. S. Dyer; Meike Vogler; Jesvin Samuel; Sandrine Jayne; Simon D. Wagner; Catrin Pritchard; Salvador Macip

There is now a plethora of new precision medicines for B‐cell malignancy including ‘classical’ kinase inhibitors, rationally designed inhibitors of anti‐apoptotic proteins and antibody or antibody drug/toxin conjugates with functional properties. Some are showing spectacular single agent activity in early phase clinical studies and may reduce or, in combination, even obviate the need for chemotherapy. Nevertheless, significant problems remain if these medicines are to be introduced into routine clinical practice in a rational and affordable manner. Firstly, precision medicines must be carefully matched in a mechanistic fashion with specific subtypes of disease. Whilst sensitivity may be predicted by the detection of key mutations or by expression of target molecules, for therapies that depend on intact intracellular signalling pathways, functional assessment on viable primary malignant cells will be necessary using assays that faithfully mimic in vivo conditions. A second, but no less important challenge is to define mechanism‐based synergistic combinations associated with minimal toxicities rather than simply adding new precision medicines to existing chemotherapeutic regimens. Finally, a closer, open, two‐way interaction between academic medicine and the pharmaceutical industry will be necessary to achieve these aims. Implementing such changes would change radically how and where patients with B‐cell malignancies are managed.


Blood | 2017

Long-term follow-up of patients with CLL treated with the selective Bruton's tyrosine kinase inhibitor ONO/GS-4059.

Harriet S. Walter; Sandrine Jayne; Simon Rule; Guillaume Cartron; Franck Morschhauser; Salvador Macip; Lionel Karlin; Ceri Jones; Charles Herbaux; Philippe Quittet; Nimish Shah; Claire V. Hutchinson; Chris Fegan; Yingsi Yang; Siddhartha Mitra; Gilles Salles; Martin J. S. Dyer

To the editor: The inhibitor of Bruton’s tyrosine kinase (BTK) ibrutinib has transformed the treatment of chronic lymphocytic leukemia (CLL); many patients with previously untreatable disease may now enter durable remissions.[1][1],[2][2] Nevertheless, the kinome of ibrutinib is broad, resulting


Genes, Chromosomes and Cancer | 2015

Detection of chromothripsis-like patterns with a custom array platform for chronic lymphocytic leukemia

Itziar Salaverria; David Martín-García; Cristina López; Guillem Clot; Manel García-Aragonés; Alba Navarro; Julio Delgado; Tycho Baumann; Magda Pinyol; Idoia Martin-Guerrero; Ana Carrió; Dolors Costa; Ana C. Queirós; Sandrine Jayne; Marta Aymerich; Neus Villamor; Dolors Colomer; Marcos González; Armando López-Guillermo; Elias Campo; Martin J. S. Dyer; Reiner Siebert; Lluís Armengol; Sílvia Beà

Chronic lymphocytic leukemia (CLL) is a common disease with highly variable clinical course. Several recurrent chromosomal alterations are associated with prognosis and may guide risk‐adapted therapy. We have developed a targeted genome‐wide array to provide a robust tool for ascertaining abnormalities in CLL and to overcome limitations of the 4‐marker fluorescence in situ hybridization (FISH). DNA from 180 CLL patients were hybridized to the qChip®Hemo array with a high density of probes covering commonly altered loci in CLL (11q22‐q23, 13q14, and 17p13), nine focal regions (2p15‐p16.1, 2p24.3, 2q13, 2q36.3‐q37.1, 3p21.31, 8q24.21, 9p21.3, 10q24.32, and 18q21.32‐q21.33) and two larger regions (6q14.1‐q22.31 and 7q31.33‐q33). Overall, 86% of the cases presented copy number alterations (CNA) by array. There was a high concordance of array findings with FISH (84% sensitivity, 100% specificity); all discrepancies corresponded to subclonal alterations detected only by FISH. A chromothripsis‐like pattern was detected in eight cases. Three showed concomitant shattered 5p with gain of TERT along with isochromosome 17q. Presence of 11q loss was associated with shorter time to first treatment (P = 0.003), whereas 17p loss, increased genomic complexity, and chromothripsis were associated with shorter overall survival (P < 0.001, P = 0.001, and P = 0.02, respectively). In conclusion, we have validated a targeted array for the diagnosis of CLL that accurately detects, in a single experiment, all relevant CNAs, genomic complexity, chromothripsis, copy number neutral loss of heterozygosity, and CNAs not covered by the FISH panel. This test may be used as a practical tool to stratify CLL patients for routine diagnostics or clinical trials.

Collaboration


Dive into the Sandrine Jayne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aneela Majid

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Claire Dearden

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Yixiang Chen

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Helen E. Speedy

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge