Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandrine Lecour is active.

Publication


Featured researches published by Sandrine Lecour.


Basic Research in Cardiology | 2010

Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations

Derek J. Hausenloy; Gary F. Baxter; Robert G. Bell; Hans Erik Bøtker; Sean M. Davidson; James M. Downey; Gerd Heusch; Masafumi Kitakaze; Sandrine Lecour; Robert M. Mentzer; Mihaela M. Mocanu; Michel Ovize; Rainer Schulz; Richard P. Shannon; Malcolm Walker; Gail Walkinshaw; Derek M. Yellon

Ischemic heart disease (IHD) is the leading cause of death worldwide. Novel cardioprotective strategies are therefore required to improve clinical outcomes in patients with IHD. Although a large number of novel cardioprotective strategies have been discovered in the research laboratory, their translation to the clinical setting has been largely disappointing. The reason for this failure can be attributed to a number of factors including the inadequacy of the animal ischemia–reperfusion injury models used in the preclinical cardioprotection studies and the inappropriate design and execution of the clinical cardioprotection studies. This important issue was the main topic of discussion of the UCL-Hatter Cardiovascular Institute 6th International Cardioprotection Workshop, the outcome of which has been published in this article as the “Hatter Workshop Recommendations”. These have been proposed to provide guidance on the design and execution of both preclinical and clinical cardioprotection studies in order to facilitate the translation of future novel cardioprotective strategies for patient benefit.


Journal of Molecular and Cellular Cardiology | 2009

Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway?

Sandrine Lecour

Lethal reperfusion injury is now recognized as a major limitation of current reperfusion therapy by primary percutaneous coronary intervention for acute myocardial infarction. Interestingly, the heart itself is capable of activating an intrinsic protective signaling programme to limit cell death during reperfusion. Tumor necrosis factor alpha (TNFalpha) is a cytokine generally thought to contribute to myocardial dysfunction in ischemia/reperfusion or heart failure. We review evidence that TNFalpha can paradoxically initiate the activation of a novel protective pathway against reperfusion injuries that we have named the Survivor Activating Factor Enhancement (SAFE) pathway. This path requires the activation of the signal transducer and activator of transcription 3 (STAT-3) and it can successfully lessen cardiomyocyte death at the time of reperfusion, independently of the activation of the already well-described Reperfusion Injury Salvage Kinase (RISK) pathway (which includes activation of Akt and Erk 1/2). Emerging knowledge on this novel protective path is presented here with the aim of unravelling its interaction with the RISK pathway and its potential human application to protect against lethal reperfusion injury.


Cardiovascular Research | 2009

Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway

Lydia Lacerda; Sarin Somers; Lionel H. Opie; Sandrine Lecour

AIMS Ischaemic postconditioning (IPostC) is a powerful protective phenomenon that activates prosurvival intrinsic signalling cascades to limit reperfusion injury. We propose that IPostC confers its infarct-sparing effect via activation of the newly described prosurvival Survivor Activating Factor Enhancement (SAFE) pathway, which involves the activation of the cytokine tumour necrosis factor alpha (TNFalpha) and signal transducer and activator of transcription-3 (STAT-3). METHODS AND RESULTS Isolated ischaemic/reperfused hearts from TNF knockout, TNF receptor-1 knockout, TNF receptor-2 knockout, cardiomyocyte-specific STAT-3-deficient mice or their respective wild-type, (TNF-WT) or (STAT-3-WT), were postconditioned by ischaemic episodes (IPostC) or with exogenous TNFalpha (0.5 microg/L) (TNF-PostC) at the onset of reperfusion. IPostC reduced infarct size (IS) in TNF-WT and TNFR1(-/-) hearts (by 33 and 27%, respectively, P < 0.05), whereas hearts from TNF(-/-) or TNFR2(-/-) failed to be postconditioned. TNF-PostC reduced IS by 37% (P < 0.05) in STAT-3-WT hearts but failed to protect cardiac-specific STAT-3(-/-) hearts. Administration of wortmannin, an inhibitor of PI-3 kinase/Akt, or PD98059, an inhibitor of extracellular regulated kinase 1/2 (Erk1/2), during the postconditioning stimulus did not abolish the infarct-sparing effect of TNF-PostC. AG490, an inhibitor of STAT-3, abrogated the protective effect of TNFalpha. Western blot analysis did not demonstrate the involvement of Akt or Erk1/2 in TNF-PostC, whereas STAT-3 phosphorylation was increased in both IPostC and TNF-PostC. CONCLUSION The protective effect of the SAFE pathway is shown in IPostC, with the activation of TNFalpha, its receptor type 2, and STAT-3. This signalling cascade is activated independently of the well-known Reperfusion Injury Salvage Kinases (RISK) pathway, which involves the kinases Akt and Erk1/2.


Cardiovascular Research | 2013

Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology

Derek J. Hausenloy; Hans Erik Bøtker; Gianluigi Condorelli; Péter Ferdinandy; David Garcia-Dorado; Gerd Heusch; Sandrine Lecour; Linda W. van Laake; Rosalinda Madonna; Marisol Ruiz-Meana; Rainer Schulz; Joost P.G. Sluijter; Derek M. Yellon; Michel Ovize

Coronary heart disease (CHD) is the leading cause of death and disability worldwide. Despite current therapy, the morbidity and mortality for patients with CHD remains significant. The most important manifestations of CHD arise from acute myocardial ischaemia-reperfusion injury (IRI) in terms of cardiomyocyte death and its long-term consequences. As such, new therapeutic interventions are required to protect the heart against the detrimental effects of acute IRI and improve clinical outcomes. Although a large number of cardioprotective therapies discovered in pre-clinical studies have been investigated in CHD patients, few have been translated into the clinical setting, and a significant number of these have failed to show any benefit in terms of reduced myocardial infarction and improved clinical outcomes. Because of this, there is currently no effective therapy for protecting the heart against the detrimental effects of acute IRI in patients with CHD. One major factor for this lack of success in translating cardioprotective therapies into the clinical setting can be attributed to problems with the clinical study design. Many of these clinical studies have not taken into consideration the important data provided from previously published pre-clinical and clinical studies. The overall aim of this ESC Working Group Cellular Biology of the Heart Position Paper is to provide recommendations for optimizing the design of clinical cardioprotection studies, which should hopefully result in new and effective therapeutic interventions for the future benefit of CHD patients.


Circulation | 2005

Pharmacological Preconditioning With Tumor Necrosis Factor-α Activates Signal Transducer and Activator of Transcription-3 at Reperfusion Without Involving Classic Prosurvival Kinases (Akt and Extracellular Signal–Regulated Kinase)

Sandrine Lecour; Naushaad Suleman; Graeme A. Deuchar; Sarin Somers; Lydia Lacerda; Barbara Huisamen; Lionel H. Opie

Background— We previously reported that tumor necrosis-factor-α (TNF-α) can mimic classic ischemic preconditioning (IPC) in a dose- and time-dependent manner. Because TNF-α activates the signal transducer and activator of transcription-3 (STAT-3), we hypothesized that TNF-α–induced preconditioning requires phosphorylation of STAT-3 rather than involving the classic prosurvival kinases, Akt and extracellular signal–regulated kinase (Erk) 1/2, during early reperfusion. Methods and Results— Isolated, ischemic/reperfused rat hearts were preconditioned by either IPC or low-dose TNF-α (0.5 ng/mL). Western blot analysis confirmed that IPC phosphorylated Akt and Erk 1/2 after 5 minutes of reperfusion (Akt increased by 34±6% and Erk, by 105±28% versus control; P<0.01). Phosphatidylinositol 3-kinase/Akt inhibition (wortmannin) or mitogen-activated protein kinase–Erk 1/2 kinase inhibition (PD-98059) during early reperfusion abolished the infarct-sparing effect of IPC. In contrast, TNF-α preconditioning did not phosphorylate these kinases (Akt increased by 7±7% and Erk, by 17±14% versus control; P=NS). Neither wortmannin nor PD-98059 inhibited TNF-α–mediated cardioprotection. However, TNF-α and IPC both phosphorylated STAT-3 and the proapoptotic protein Bcl-2 antagonist of cell death (BAD) (STAT-3 increased by 58±17% with TNF-α or by 68±12% with IPC; BAD increased by 75±8% with TNF-α or by 205±20% with IPC; P<0.01 versus control), thereby activating the former and inactivating the latter. The STAT-3 inhibitor AG 490 abolished cardioprotection and BAD phosphorylation with both preconditioning stimuli. Conclusions— Activation of the classic prosurvival kinases (Akt and Erk 1/2) is not essential for TNF-α–induced preconditioning in the early reperfusion phase. We show the existence of an alternative protective pathway that involves STAT-3 activation specifically at reperfusion in response to both TNF-α and classic IPC. This novel prosurvival pathway may have potential therapeutic significance.


Basic Research in Cardiology | 2012

Trials, tribulations and speculation! Report from the 7th Biennial Hatter Cardiovascular Institute Workshop

Robert G. Bell; Reinier Beeuwkes; Hans Erik Bøtker; Sean M. Davidson; James M. Downey; David Garcia-Dorado; Derek J. Hausenloy; Gerd Heusch; Borja Ibanez; Masafumi Kitakaze; Sandrine Lecour; Robert M. Mentzer; Tetsuji Miura; Lionel H. Opie; Michel Ovize; Marisol Ruiz-Meana; Rainer Schulz; Richard P. Shannon; Malcolm Walker; Jakob Vinten-Johansen; Derek M. Yellon

The 7th biennial Hatter Cardiovascular Institute Workshop, comprising 21 leading basic science and clinical experts, was held in South Africa in August 2012 to discuss the current cutting edge status of cardioprotection and the application of cardioprotective modalities in the clinical management of myocardial ischaemia/reperfusion injury in the context of acute coronary syndromes and cardiac surgery. The meeting, chaired by Professor Derek Yellon and Professor Lionel Opie, was run to a format of previous Hatter Cardiovascular workshops with data presented by proponents followed by discussion and debate by the faculty.


Antioxidants & Redox Signaling | 2011

Reperfusion Injury Salvage Kinase and Survivor Activating Factor Enhancement Prosurvival Signaling Pathways in Ischemic Postconditioning: Two Sides of the Same Coin

Derek J. Hausenloy; Sandrine Lecour; Derek M. Yellon

The discovery of ischemic postconditioning (IPost) has rejuvenated the field of cardioprotection. As an interventional strategy to be applied at the onset of myocardial reperfusion, the transition of IPost from a bench-side curiosity to potential clinical therapy has been impressively rapid. Its existence also confirms the existence of lethal myocardial reperfusion injury in man, suggesting that 40%-50% of the final reperfused myocardial infarct may actually be due to myocardial reperfusion injury. Intensive analysis of the signal transduction pathways underlying IPost has identified similarities with the signaling pathways underlying its preischemic counterpart, ischemic preconditioning. In this article, the reperfusion injury salvage kinase pathway and the more recently described survivor activating factor enhancement pathway, two apparently distinct signaling pathways that actually interact to convey the IPost stimulus from the cell surface to the mitochondria, where many of the prosurvival and death signals appear to converge. The elucidation of the reperfusion signaling pathways underlying IPost may result in the identification of novel pharmacological targets for cardioprotection.


Cardiovascular Research | 2008

Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning

Naushaad Suleman; Sarin Somers; Robert M. Smith; Lionel H. Opie; Sandrine Lecour

AIMS During preconditioning by tumour necrosis factor-alpha (TNFalpha), activation of the signal transducer and activator of transcription-3 (STAT-3) but not Akt, is essential, whereas ischaemic cardiac preconditioning (IPC) requires both STAT-3 and Akt at the time of reperfusion. However, it is not known whether the same signalling pattern occurs during the preconditioning stimulus (trigger phase) and whether links exist between STAT-3 and Akt. Hence, our hypothesis is that concomitant activation or co-interaction between these two key signals is required during the trigger phase for IPC. Conversely, we proposed that there would be no such interaction when preconditioning was induced by TNFalpha (TNF-PC). METHODS AND RESULTS Cardiomyocytes, isolated from adult wild-type (WT) and cardiac-specific STAT-3 knockout (KO) mice, were exposed to simulated ischaemia (SI) reperfusion. Cells were preconditioned either by 30 min SI or by 30 min TNFalpha (0.5 ng/mL) in the presence or absence of AG490 (100 nM) or wortmannin (100 nM) to inhibit STAT-3 or Akt, respectively. Cell viability was evaluated by trypan blue, and phosphorylation levels of STAT-3 and Akt were measured by Western blot analysis. Similar experiments were conducted in isolated rat hearts subjected to an ischaemia-reperfusion insult. Both preconditioning stimuli failed to protect KO cardiomyocytes, and addition of AG490 abolished preconditioning in WT cardiomyocytes or isolated hearts. Wortmannin abolished the protection afforded by IPC, but did not affect TNF-PC in both models. Western blot analysis demonstrated that added wortmannin during IPC stimulus decreased STAT-3 phosphorylation while, conversely, AG490 reduced Akt phosphorylation. CONCLUSION STAT-3 activation could be achieved independent of Akt during TNF-PC. In contrast, during an IPC stimulus, both prosurvival signalling molecule cascades acted in concert so that inhibiting activation of STAT-3 also inhibited that of Akt and vice versa.


Anesthesiology | 2002

Systemic Free Radical Activation Is a Major Event Involved In Myocardial Oxidative Stress Related to Cardiopulmonary Bypass

Gaëlle Clermont; Catherine Vergely; Saed Jazayeri; Jean-Jacques Lahet; Jean-Jacques Goudeau; Sandrine Lecour; Michel David; Luc Rochette; Claude Girard

Background Cardiopulmonary bypass (CPB) can induce deleterious effects that could be triggered in part by radical oxygen species; however, their involvement in the course of surgery has been elusive. The aim of this study was to evaluate the time course and origin of radical oxygen species release, myocardial or not, in patients undergoing coronary artery surgery involving CPB. Methods Blood samples were taken from periphery and coronary sinus of patients during CPB, and oxidative stress was evaluated by direct and indirect approaches. Direct detection of alkyl and alkoxyl radicals was assessed by electron spin resonance spectroscopy associated with the spin-trapping technique using &agr;-phenyl-N-tert-butylnitrone. Results The authors showed that the spin adduct concentration was not influenced by anesthesia and pre-CPB surgery. A rapid systemic increase of plasma spin adduct concentration occurred after starting CPB, and it stayed at a high concentration until the end of CPB. At the beginning of reperfusion period, radical oxygen species release was accelerated in the coronary sinus; however, it was not significant. A positive correlation was found between &agr;-phenyl-N-tert-butylnitrone adduct concentrations and (1) the duration of CPB and (2) concentration of postoperative creatine phosphokinase of muscle band (CPK MB). Plasma vitamin E and C, ascorbyl radical, uric acid, thiol, plasma antioxidant status, and thiobarbituric acid reacting substances were also measured but did not give relevant indications, except for uric acid, which seemed to be consumed by the heart during reperfusion. Conclusion The results indicate that a systemic production of free radicals occurs during CPB that may overwhelm the production related to reperfusion of the ischemic heart. This systemic oxidative stress is likely to participate in secondary myocardial damage.


Journal of Pineal Research | 2011

Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol‐ and melatonin‐induced cardioprotection

Kim Lamont; Sarin Somers; Lydia Lacerda; Lionel H. Opie; Sandrine Lecour

Abstract:  Epidemiological studies suggest that regular moderate consumption of red wine confers cardioprotection but the mechanisms involved in this effect remain unclear. Recent studies demonstrate the presence of melatonin in wine. We propose that melatonin, at a concentration found in red wine, confers cardioprotection against ischemia–reperfusion injury. Furthermore, we investigated whether both melatonin and resveratrol protect via the activation of the newly discovered survivor activating factor enhancement (SAFE) prosurvival signaling pathway that involves the activation of tumor necrosis factor alpha (TNFα) and the signal transducer and activator of transcription 3 (STAT3). Isolated perfused male mouse (wild type, TNFα receptor 2 knockout mice, and cardiomyocyte‐specific STAT3‐deficient mice) or rat hearts (Wistars) were subjected to ischemia–reperfusion. Resveratrol (2.3 mg/L) or melatonin (75 ng/L) was perfused for 15 min with a 10‐min washout period prior to an ischemia–reperfusion insult. Infarct size was measured at the end of the protocol, and Western blot analysis was performed to evaluate STAT3 activation prior to the ischemic insult. Both resveratrol and melatonin, at concentrations found in red wine, significantly reduced infarct size compared with control hearts in wild‐type mouse hearts (25 ± 3% and 25 ± 3% respectively versus control 69 ± 3%, P < 0.001) but failed to protect in TNF receptor 2 knockout or STAT3‐deficient mice. Furthermore, perfusion with either melatonin or resveratrol increased STAT3 phosphorylation prior to ischemia by 79% and 50%, respectively (P < 0.001 versus control). Our data demonstrate that both melatonin and resveratrol, as found in red wine, protect the heart in an experimental model of myocardial infarction via the SAFE pathway.

Collaboration


Dive into the Sandrine Lecour's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Sliwa

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarin Somers

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek M. Yellon

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge