Sandrine Ollagnier de Choudens
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandrine Ollagnier de Choudens.
Journal of Biological Chemistry | 2006
Gunhild Layer; Sandrine Ollagnier de Choudens; Yiannis Sanakis; Marc Fontecave
The biogenesis of iron-sulfur [Fe-S] clusters requires the coordinated delivery of both iron and sulfide. Sulfide is provided by cysteine desulfurases that use l-cysteine as sulfur source. So far, the physiological iron donor has not been clearly identified. CyaY, the bacterial ortholog of frataxin, an iron binding protein thought to be involved in iron-sulfur cluster formation in eukaryotes, is a good candidate because it was shown to bind iron. Nevertheless, no functional in vitro studies showing an involvement of CyaY in [Fe-S] cluster biosynthesis have been reported so far. In this paper we demonstrate for the first time a specific interaction between CyaY and IscS, a cysteine desulfurase participating in iron-sulfur cluster assembly. Analysis of the iron-loaded CyaY protein demonstrated a strong binding of Fe3+ and a weak binding of Fe2+ by CyaY. Biochemical analysis showed that the CyaY-Fe3+ protein corresponds to a mixture of monomer, intermediate forms (dimer-pentamers), and oligomers with the intermediate one corresponding to the only stable and soluble iron-containing form of CyaY. Using spectroscopic methods, this form was further demonstrated to be functional in vitro as an iron donor during [Fe-S] cluster assembly on the scaffold protein IscU in the presence of IscS and cysteine. All of these results point toward a link between CyaY and [Fe-S] cluster biosynthesis, and a possible mechanism for the process is discussed.
Journal of Biological Chemistry | 2007
Gunhild Layer; S. Aparna Gaddam; Carla Ayala-Castro; Sandrine Ollagnier de Choudens; David Lascoux; Marc Fontecave; F. Wayne Outten
Iron-sulfur (Fe-S) clusters are key metal cofactors of metabolic, regulatory, and stress response proteins in most organisms. The unique properties of these clusters make them susceptible to disruption by iron starvation or oxidative stress. Both iron and sulfur can be perturbed under stress conditions, leading to Fe-S cluster defects. Bacteria and higher plants contain a specialized system for Fe-S cluster biosynthesis under stress, namely the Suf pathway. In Escherichia coli the Suf pathway consists of six proteins with functions that are only partially characterized. Here we describe how the SufS and SufE proteins interact with the SufBCD protein complex to facilitate sulfur liberation from cysteine and donation for Fe-S cluster assembly. It was previously shown that the cysteine desulfurase SufS donates sulfur to the sulfur transfer protein SufE. We have found here that SufE in turn interacts with the SufB protein for sulfur transfer to that protein. The interaction occurs only if SufC is present. Furthermore, SufB can act as a site for Fe-S cluster assembly in the Suf system. This provides the first evidence of a novel site for Fe-S cluster assembly in the SufBCD complex.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Laurent Loiseau; Catherine Gerez; Martijn Bekker; Sandrine Ollagnier de Choudens; Béatrice Py; Yannis Sanakis; Joost Teixeira de Mattos; Marc Fontecave; Frédéric Barras
Understanding the biogenesis of iron–sulfur (Fe–S) proteins is relevant to many fields, including bioenergetics, gene regulation, and cancer research. Several multiprotein complexes assisting Fe–S assembly have been identified in both prokaryotes and eukaryotes. Here, we identify in Escherichia coli an A-type Fe–S protein that we named ErpA. Remarkably, erpA was found essential for growth of E. coli in the presence of oxygen or alternative electron acceptors. It was concluded that isoprenoid biosynthesis was impaired by the erpA mutation. First, the eukaryotic mevalonate-dependent pathway for biosynthesis of isopentenyl diphosphate restored the respiratory defects of an erpA mutant. Second, the erpA mutant contained a greatly reduced amount of ubiquinone and menaquinone. Third, ErpA bound Fe–S clusters and transferred them to apo-IspG, a protein catalyzing isopentenyl diphosphate biosynthesis in E. coli. Surprisingly, the erpA gene maps at a distance from any other Fe–S biogenesis-related gene. ErpA is an A-type Fe–S protein that is characterized by an essential role in cellular metabolism.
Journal of Biological Chemistry | 2008
Sendra Angelini; Catherine Gerez; Sandrine Ollagnier de Choudens; Yiannis Sanakis; Marc Fontecave; Frédéric Barras; Béatrice Py
Iron/sulfur (Fe/S) proteins are central to the functioning of cells in both prokaryotes and eukaryotes. Here, we show that the yhgI gene, which we renamed nfuA, encodes a two-domain protein that is required for Fe/S biogenesis in Escherichia coli. The N-terminal domain resembles the so-called Fe/S A-type scaffold but, curiously, has lost the functionally important Cys residues. The C-terminal domain shares sequence identity with Nfu proteins. Mössbauer and UV-visible spectroscopic analyses revealed that, upon reconstitution, NfuA binds a [4Fe-4S] cluster. Moreover, NfuA can transfer this cluster to apo-aconitase. Mutagenesis studies indicated that the N- and C-terminal domains are important for NfuA function in vivo. Similarly, the functional importance of Cys residues present in the Nfu-like domain was demonstrated in vivo by introducing Cys→Ser mutations. In vivo investigations revealed that the nfuA gene is important for E. coli to sustain oxidative stress and iron starvation. Also, combining nfuA with either isc or suf mutations led to additive phenotypic deficiencies, indicating that NfuA is a bona fide new player in Isc- and Suf-dependent Fe/S biogenesis pathways. Taken together, these data demonstrate that NfuA intervenes in the maturation of apoproteins in E. coli, allowing them to acquire Fe/S clusters. By taking into account results from numerous previous transcriptomic studies that had suggested a link between NfuA and protein misfolding, we discuss the possibility that NfuA could act as a scaffold/chaperone for damaged Fe/S proteins.
Journal of Biological Chemistry | 2010
Silke Wollers; Gunhild Layer; Ricardo Garcia-Serres; Luca Signor; Martin Clémancey; Jean-Marc Latour; Marc Fontecave; Sandrine Ollagnier de Choudens
Assembly of iron-sulfur (Fe-S) clusters and maturation of Fe-S proteins in vivo require complex machineries. In Escherichia coli, under adverse stress conditions, this process is achieved by the SUF system that contains six proteins as follows: SufA, SufB, SufC, SufD, SufS, and SufE. Here, we provide a detailed characterization of the SufBCD complex whose function was so far unknown. Using biochemical and spectroscopic analyses, we demonstrate the following: (i) the complex as isolated exists mainly in a 1:2:1 (B:C:D) stoichiometry; (ii) the complex can assemble a [4Fe-4S] cluster in vitro and transfer it to target proteins; and (iii) the complex binds one molecule of flavin adenine nucleotide per SufBC2D complex, only in its reduced form (FADH2), which has the ability to reduce ferric iron. These results suggest that the SufBC2D complex functions as a novel type of scaffold protein that assembles an Fe-S cluster through the mobilization of sulfur from the SufSE cysteine desulfurase and the FADH2-dependent reductive mobilization of iron.
Journal of Biological Chemistry | 2003
Sandrine Ollagnier de Choudens; Laurence Nachin; Yiannis Sanakis; Laurent Loiseau; Frédéric Barras; Marc Fontecave
SufA is a component of the recently discoveredsuf operon, which has been shown to play an important function in bacteria during iron-sulfur cluster biosynthesis and resistance to oxidative stress. The SufA protein from Erwinia chrysanthemi, a Gram-negative plant pathogen, has been purified to homogeneity and characterized. It is a homodimer with the ability to assemble rather labile [2Fe-2S] and [4Fe-4S] clusters as shown by Mössbauer spectroscopy. These clusters can be transferred to apoproteins such as ferredoxin or biotin synthase during a reaction that is not inhibited by bathophenanthroline, an iron chelator. Cluster assembly in these proteins is much more efficient when iron and sulfur are provided by holoSufA than by free iron sulfate and sodium sulfide. We propose the function of SufA is that of a scaffold protein for [Fe-S] cluster assembly and compare it to IscA, a member of theisc operon also involved in cluster biosynthesis in both prokaryotes and eukaryotes. Mechanistic and physiological implications of these results are also discussed.
Journal of the American Chemical Society | 2009
Vibha Gupta; Maïté Sendra; Sunil G. Naik; Harsimranjit K. Chahal; Boi Hanh Huynh; F. Wayne Outten; Marc Fontecave; Sandrine Ollagnier de Choudens
Iron-sulfur (Fe-S) clusters are versatile biological cofactors that require biosynthetic systems in vivo to be assembled. In Escherichia coli, the Isc (iscRSUA-hscBA-fdx-iscX) and Suf (sufABCDSE) pathways fulfill this function. Despite extensive biochemical and genetic analysis of these two pathways, the physiological function of the A-type proteins of each pathway (IscA and SufA) is still unclear. Studies conducted in vitro suggest two possible functions for A-type proteins, as Fe-S scaffold/transfer proteins or as iron donors during cluster assembly. To resolve this issue, SufA was coexpressed in vivo with its cognate partner proteins from the suf operon, SufBCDSE. Native SufA purified anaerobically using this approach was unambiguously demonstrated to be a [2Fe-2S] protein by biochemical analysis and UV-vis, Mossbauer, resonance Raman, and EPR spectroscopy. Furthermore, native [2Fe-2S] SufA can transfer its Fe-S cluster to both [2Fe-2S] and [4Fe-4S] apoproteins. These results clearly show that A-type proteins form Fe-S clusters in vivo and are competent to function as Fe-S transfer proteins as purified. This study resolves the contradictory results from previous in vitro studies and demonstrates the critical importance of providing in vivo partner proteins during protein overexpression to allow correct biochemical maturation of metalloproteins.
Molecular Microbiology | 2012
Béatrice Py; Catherine Gerez; Sandra Angelini; Rémy Planel; Daniel Vinella; Laurent Loiseau; Emmanuel Talla; Céline Brochier-Armanet; Ricardo Garcia Serres; Jean-Marc Latour; Sandrine Ollagnier de Choudens; Marc Fontecave; Frédéric Barras
Biosynthesis of iron–sulphur (Fe‐S) proteins is catalysed by multi‐protein systems, ISC and SUF. However, ‘non‐ISC, non‐SUF’ Fe‐S biosynthesis factors have been described, both in prokaryotes and eukaryotes. Here we report in vitro and in vivo investigations of such a ‘non‐ISC, non SUF’ component, the Nfu proteins. Phylogenomic analysis allowed us to define four subfamilies. Escherichia coli NfuA is within subfamily II. Most members of this subfamily have a Nfu domain fused to a ‘degenerate’ A‐type carrier domain (ATC*) lacking Fe‐S cluster co‐ordinating Cys ligands. The Nfu domain binds a [4Fe‐4S] cluster while the ATC* domain interacts with NuoG (a complex I subunit) and aconitase B (AcnB). In vitro, holo‐NfuA promotes maturation of AcnB. In vivo, NfuA is necessary for full activity of complex I under aerobic growth conditions, and of AcnB in the presence of superoxide. NfuA receives Fe‐S clusters from IscU/HscBA and SufBCD scaffolds and eventually transfers them to the ATCs IscA and SufA. This study provides significant information on one of the Fe‐S biogenesis factors that has been often used as a building block by ISC and/or SUF synthesizing organisms, including bacteria, plants and animals.
FEBS Letters | 1999
Sandrine Ollagnier de Choudens; Marc Fontecave
Lipoate synthase catalyzes the last step of the biosynthesis of lipoic acid in microorganisms and plants. The protein isolated from an overexpressing Escherichia coli strain was purified from inclusion bodies. Spectroscopic (UV‐visible and electron paramagnetic resonance) properties of the reconstituted protein demonstrate the presence of a (2Fe‐2S) center per protein. As observed in biotin synthase, these clusters are converted to (4Fe‐4S) centers during reduction under anaerobic conditions. The possible involvement of the cluster in the insertion of sulfur atoms into the octanoic acid backbone is discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Anastasios D. Tsaousis; Sandrine Ollagnier de Choudens; Eleni Gentekaki; Shaojun Long; Daniel Gaston; Alexandra Stechmann; Daniel Vinella; Béatrice Py; Marc Fontecave; Frédéric Barras; Julius Lukeš; Andrew J. Roger
Iron/sulfur cluster (ISC)-containing proteins are essential components of cells. In most eukaryotes, Fe/S clusters are synthesized by the mitochondrial ISC machinery, the cytosolic iron/sulfur assembly system, and, in photosynthetic species, a plastid sulfur-mobilization (SUF) system. Here we show that the anaerobic human protozoan parasite Blastocystis, in addition to possessing ISC and iron/sulfur assembly systems, expresses a fused version of the SufC and SufB proteins of prokaryotes that it has acquired by lateral transfer from an archaeon related to the Methanomicrobiales, an important lineage represented in the human gastrointestinal tract microbiome. Although components of the Blastocystis ISC system function within its anaerobic mitochondrion-related organelles and can functionally replace homologues in Trypanosoma brucei, its SufCB protein has similar biochemical properties to its prokaryotic homologues, functions within the parasite’s cytosol, and is up-regulated under oxygen stress. Blastocystis is unique among eukaryotic pathogens in having adapted to its parasitic lifestyle by acquiring a SUF system from nonpathogenic Archaea to synthesize Fe/S clusters under oxygen stress.