Sandrine Sanchez
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandrine Sanchez.
American Journal of Pathology | 2013
Magdalena Kuszczyk; Sandrine Sanchez; Joanna Pankiewicz; Jungsu Kim; Malgorzata Duszczyk; Maitea Guridi; Ayodeji A. Asuni; Patrick M. Sullivan; David M. Holtzman; Martin J. Sadowski
Accumulation of β-amyloid (Aβ) in the brain is a key event in Alzheimer disease pathogenesis. Apolipoprotein (Apo) E is a lipid carrier protein secreted by astrocytes, which shows inherent affinity for Aβ and has been implicated in the receptor-mediated Aβ uptake by neurons. To characterize ApoE involvement in the intraneuronal Aβ accumulation and to investigate whether blocking the ApoE/Aβ interaction could reduce intraneuronal Aβ buildup, we used a noncontact neuronal-astrocytic co-culture system, where synthetic Aβ peptides were added into the media without or with cotreatment with Aβ12-28P, which is a nontoxic peptide antagonist of ApoE/Aβ binding. Compared with neurons cultured alone, intraneuronal Aβ content was significantly increased in neurons co-cultured with wild-type but not with ApoE knockout (KO) astrocytes. Neurons co-cultured with astrocytes also showed impaired intraneuronal degradation of Aβ, increased level of intraneuronal Aβ oligomers, and marked down-regulation of several synaptic proteins. Aβ12-28P treatment significantly reduced intraneuronal Aβ accumulation, including Aβ oligomer level, and inhibited loss of synaptic proteins. Furthermore, we showed significantly reduced intraneuronal Aβ accumulation in APPSW/PS1dE9/ApoE KO mice compared with APPSW/PS1dE9/ApoE targeted replacement mice that expressed various human ApoE isoforms. Data from our co-culture and in vivo experiments indicate an essential role of ApoE in the mechanism of intraneuronal Aβ accumulation and provide evidence that ApoE/Aβ binding antagonists can effectively prevent this process.
Acta neuropathologica communications | 2014
Joanna Pankiewicz; Maitea Guridi; Jungsu Kim; Ayodeji A. Asuni; Sandrine Sanchez; Patrick M. Sullivan; David M. Holtzman; Martin J. Sadowski
Accumulation of β-amyloid (Aβ) in the brain is essential to Alzheimer’s disease (AD) pathogenesis. Carriers of the apolipoprotein E (APOE) ε4 allele demonstrate greatly increased AD risk and enhanced brain Aβ deposition. In contrast, APOE ε2 allele carries show reduced AD risk, later age of disease onset, and lesser Aβ accumulation. However, it remains elusive whether the apoE2 isoform exerts truly protective effect against Aβ pathology or apoE2 plays deleterious role albeit less pronounced than the apoE4 isoform. Here, we characterized APPSW/PS1dE9/APOE ε2-TR (APP/E2) and APPSW/PS1dE9/APOE ε4-TR (APP/E4) mice, with targeted replacement (TR) of the murine Apoe for human ε2 or ε4 alleles, and used these models to investigate effects of pharmacological inhibition of the apoE/Aβ interaction on Aβ deposition and neuritic degeneration. APP/E2 and APP/E4 mice replicate differential effect of human apoE isoforms on Aβ pathology with APP/E4 mice showing a several-fold greater load of Aβ plaques, insoluble brain Aβ levels, Aβ oligomers, and density of neuritic plaques than APP/E2 mice. Furthermore, APP/E4 mice, but not APP/E2 mice, exhibit memory impairment on object recognition and radial arm maze tests. Between the age of 6 and 10 months APP/E2 and APP/E4 mice received treatment with Aβ12-28P, a non-toxic, synthetic peptide homologous to the apoE binding motif within the Aβ sequence, which competitively blocks the apoE/Aβ interaction. In both lines, the treatment significantly reduced brain Aβ accumulation, co-accumulation of apoE within Aβ plaques, and neuritic degeneration, and prevented memory deficit in APP/E4 mice. These results indicate that both apoE2 and apoE4 isoforms contribute to Aβ deposition and future therapies targeting the apoE/Aβ interaction could produce favorable outcome in APOE ε2 and ε4 allele carriers.
Annals of Neurology | 2014
Ayodeji A. Asuni; Maitea Guridi; Joanna Pankiewicz; Sandrine Sanchez; Martin J. Sadowski
Proteolytic cleavage of the amyloid precursor protein (APP) generates β‐amyloid (Aβ) peptides. Prolonged accumulation of Aβ in the brain underlies the pathogenesis of Alzheimer disease (AD) and is regarded as a principal target for development of disease‐modifying therapeutics.
PLOS Genetics | 2017
Qiuling Li; David A. Kellner; Hayden A. M. Hatch; Tomohiro Yumita; Sandrine Sanchez; Robert P. Machold; C. Andrew Frank; Nicholas Stavropoulos
Sleep is an ancient animal behavior that is regulated similarly in species ranging from flies to humans. Various genes that regulate sleep have been identified in invertebrates, but whether the functions of these genes are conserved in mammals remains poorly explored. Drosophila insomniac (inc) mutants exhibit severely shortened and fragmented sleep. Inc protein physically associates with the Cullin-3 (Cul3) ubiquitin ligase, and neuronal depletion of Inc or Cul3 strongly curtails sleep, suggesting that Inc is a Cul3 adaptor that directs the ubiquitination of neuronal substrates that impact sleep. Three proteins similar to Inc exist in vertebrates—KCTD2, KCTD5, and KCTD17—but are uncharacterized within the nervous system and their functional conservation with Inc has not been addressed. Here we show that Inc and its mouse orthologs exhibit striking biochemical and functional interchangeability within Cul3 complexes. Remarkably, KCTD2 and KCTD5 restore sleep to inc mutants, indicating that they can substitute for Inc in vivo and engage its neuronal targets relevant to sleep. Inc and its orthologs localize similarly within fly and mammalian neurons and can traffic to synapses, suggesting that their substrates may include synaptic proteins. Consistent with such a mechanism, inc mutants exhibit defects in synaptic structure and physiology, indicating that Inc is essential for both sleep and synaptic function. Our findings reveal that molecular functions of Inc are conserved through ~600 million years of evolution and support the hypothesis that Inc and its orthologs participate in an evolutionarily conserved ubiquitination pathway that links synaptic function and sleep regulation.
Nature Communications | 2018
Samuel M. Cohen; Benjamin Suutari; Xingzhi He; Yang Wang; Sandrine Sanchez; Natasha N. Tirko; Nataniel J. Mandelberg; Caitlin Mullins; Guangjun Zhou; Shuqi Wang; Ilona Kats; Alejandro Salah; Richard W. Tsien; Huan Ma
Learning and memory depend on neuronal plasticity originating at the synapse and requiring nuclear gene expression to persist. However, how synapse-to-nucleus communication supports long-term plasticity and behavior has remained elusive. Among cytonuclear signaling proteins, γCaMKII stands out in its ability to rapidly shuttle Ca2+/CaM to the nucleus and thus activate CREB-dependent transcription. Here we show that elimination of γCaMKII prevents activity-dependent expression of key genes (BDNF, c-Fos, Arc), inhibits persistent synaptic strengthening, and impairs spatial memory in vivo. Deletion of γCaMKII in adult excitatory neurons exerts similar effects. A point mutation in γCaMKII, previously uncovered in a case of intellectual disability, selectively disrupts CaM sequestration and CaM shuttling. Remarkably, this mutation is sufficient to disrupt gene expression and spatial learning in vivo. Thus, this specific form of cytonuclear signaling plays a key role in learning and memory and contributes to neuropsychiatric disease.Activity-dependent gene expression is thought to involve translocation of Ca2+/calmodulin (CaM) to the nucleus. Here, the authors examine a translocation-deficient mutant of γCaMKII, a Ca2+/CaM shuttle protein, to show that translocation of Ca2+/CaM is required for memory and synaptic plasticity.
Molecular Neurobiology | 2018
Joanna Pankiewicz; Sandrine Sanchez; Kent Kirshenbaum; Regina Kascsak; Richard J. Kascsak; Martin J. Sadowski
PrPSc is an infectious and disease-specific conformer of the prion protein, which accumulation in the CNS underlies the pathology of prion diseases. PrPSc replicates by binding to the cellular conformer of the prion protein (PrPC) expressed by host cells and rendering its secondary structure a likeness of itself. PrPC is a plasma membrane anchored protein, which constitutively recirculates between the cell surface and the endocytic compartment. Since PrPSc engages PrPC along this trafficking pathway, its replication process is often referred to as “recycling propagation.” Certain monoclonal antibodies (mAbs) directed against prion protein can abrogate the presence of PrPSc from prion-infected cells. However, the precise mechanism(s) underlying their therapeutic propensities remains obscure. Using N2A murine neuroblastoma cell line stably infected with 22L mouse-adapted scrapie strain (N2A/22L), we investigated here the modus operandi of the 6D11 clone, which was raised against the PrPSc conformer and has been shown to permanently clear prion-infected cells from PrPSc presence. We determined that 6D11 mAb engages and sequesters PrPC and PrPSc at the cell surface. PrPC/6D11 and PrPSc/6D11 complexes are then endocytosed from the plasma membrane and are directed to lysosomes, therefore precluding recirculation of nascent PrPSc back to the cell surface. Targeting PrPSc by 6D11 mAb to the lysosomal compartment facilitates its proteolysis and eventually shifts the balance between PrPSc formation and degradation. Ongoing translation of PrPC allows maintaining the steady-state level of prion protein within the cells, which was not depleted under 6D11 mAb treatment. Our findings demonstrate that through disrupting recycling propagation of PrPSc and promoting its degradation, 6D11 mAb restores cellular proteostasis of prion protein.
Annals of Neurology | 2014
Ayodeji A. Asuni; Maitea Guridi; Joanna Pankiewicz; Sandrine Sanchez; Martin J. Sadowski
Proteolytic cleavage of the amyloid precursor protein (APP) generates β‐amyloid (Aβ) peptides. Prolonged accumulation of Aβ in the brain underlies the pathogenesis of Alzheimer disease (AD) and is regarded as a principal target for development of disease‐modifying therapeutics.
Annals of Neurology | 2014
Ayodeji A. Asuni; Maitea Guridi; Joanna Pankiewicz; Sandrine Sanchez; Martin J. Sadowski
Proteolytic cleavage of the amyloid precursor protein (APP) generates β‐amyloid (Aβ) peptides. Prolonged accumulation of Aβ in the brain underlies the pathogenesis of Alzheimer disease (AD) and is regarded as a principal target for development of disease‐modifying therapeutics.
Acta neuropathologica communications | 2014
Joanna Pankiewicz; Maitea Guridi; Jungsu Kim; Ayodeji A. Asuni; Sandrine Sanchez; Patrick M. Sullivan; David M. Holtzman; Martin J. Sadowski
Accumulation of β-amyloid (Aβ) in the brain is essential to Alzheimer’s disease (AD) pathogenesis. Carriers of the apolipoprotein E (APOE) e4 allele demonstrate greatly increased AD risk and enhanced brain Aβ deposition. In contrast, APOE e2 allele carries show reduced AD risk, later age of disease onset, and lesser Aβ accumulation. However, it remains elusive whether the apoE2 isoform exerts truly protective effect against Aβ pathology or apoE2 plays deleterious role albeit less pronounced than the apoE4 isoform. Here, we characterized APPSW/PS1dE9/ APOE e2-TR (APP/E2) and APPSW/PS1dE9/APOE e4-TR (APP/E4) mice, with targeted replacement (TR) of the murine Apoe for human e 2o re4 alleles, and used these models to investigate effects of pharmacological inhibition of the apoE/Aβ interaction on Aβ deposition and neuritic degeneration. APP/E2 and APP/E4 mice replicate differential effect of human apoE isoforms on Aβ pathology with APP/E4 mice showing a several-fold greater load of Aβ plaques, insoluble brain Aβ levels, Aβ oligomers, and density of neuritic plaques than APP/E2 mice. Furthermore, APP/E4 mice, but not APP/E2 mice, exhibit memory impairment on object recognition and radial arm maze tests. Between the age of 6 and 10 months APP/E2 and APP/E4 mice received treatment with Aβ12-28P, a non-toxic, synthetic peptide homologous to the apoE binding motif within the Aβ sequence, which competitively blocks the apoE/Aβ interaction. In both lines, the treatment significantly reduced brain Aβ accumulation, co-accumulation of apoE within Aβ plaques, and neuritic degeneration, and prevented memory deficit in APP/E4 mice. These results indicate that both apoE2 and apoE4 isoforms contribute to Aβ deposition and future therapies targeting the apoE/Aβ interaction could produce favorable outcome in APOE e 2a nde4 allele carriers.
Alzheimers & Dementia | 2012
Ayodeji A. Asuni; Maitea Guridi Ormazabal; Sandrine Sanchez; Martin J. Sadowski
phenyltetrazolium bromide) assay, trypan blue staining, and DAPI staining were performed andWestern blotting for the evaluation of effect on intracellular signaling proteins was achieved. Results: NSC proliferation decreased with Ab 25-35 treatment, but combined treatment with CoQ10 increased the proliferation ofAb 25-35 -treatedNSCs.Meanwhile, CoQ10 treatment ofAb 25-35 -inhibited proliferation of NSCs increased the expression levels of p85aPI3K, phosphorylated Akt, phosphorylated glycogen synthase kinase3b, and heat shock transcription factor, which are proteins related to neuronal cell survival. Conclusions: These results suggest that CoQ10 restores Ab 25-35 -inhibited proliferation of NSCs by activating the PI3K pathway.