Sandrine Villette
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandrine Villette.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Alexandra Foucault-Collet; Kristy A. Gogick; Kiley A. White; Sandrine Villette; Agnès Pallier; Guillaume Collet; Claudine Kieda; Tao Li; Steven J. Geib; Nathaniel L. Rosi; Stéphane Petoud
We have created unique near-infrared (NIR)–emitting nanoscale metal-organic frameworks (nano-MOFs) incorporating a high density of Yb3+ lanthanide cations and sensitizers derived from phenylene. We establish here that these nano-MOFs can be incorporated into living cells for NIR imaging. Specifically, we introduce bulk and nano-Yb-phenylenevinylenedicarboxylate-3 (nano-Yb-PVDC-3), a unique MOF based on a PVDC sensitizer-ligand and Yb3+ NIR-emitting lanthanide cations. This material has been structurally characterized, its stability in various media has been assessed, and its luminescent properties have been studied. We demonstrate that it is stable in certain specific biological media, does not photobleach, and has an IC50 of 100 μg/mL, which is sufficient to allow live cell imaging. Confocal microscopy and inductively coupled plasma measurements reveal that nano-Yb-PVDC-3 can be internalized by cells with a cytoplasmic localization. Despite its relatively low quantum yield, nano-Yb-PVDC-3 emits a sufficient number of photons per unit volume to serve as a NIR-emitting reporter for imaging living HeLa and NIH 3T3 cells. NIR microscopy allows for highly efficient discrimination between the nano-MOF emission signal and the cellular autofluorescence arising from biological material. This work represents a demonstration of the possibility of using NIR lanthanide emission for biological imaging applications in living cells with single-photon excitation.
Chemical Communications | 2008
Laurent Pellegatti; Jian Zhang; Bohuslav Drahoš; Sandrine Villette; Franck Suzenet; Gérald Guillaumet; Stéphane Petoud; Éva Tóth
We report two prototype Ln(3+) complexes that address requirements for both MRI and luminescence imaging and we demonstrate that the presence of two H(2)O molecules bound to the Ln(3+), beneficial for MRI applications of the Gd(3+) analogue, is not a major limitation for the development of NIR luminescent agents.
Chemistry: A European Journal | 2012
Célia S. Bonnet; Frédéric Buron; Fabien Caillé; Chad M. Shade; Bohuslav Drahoš; Laurent Pellegatti; Jian Zhang; Sandrine Villette; Lothar Helm; Chantal Pichon; Franck Suzenet; Stéphane Petoud; Éva Tóth
A series of novel triazole derivative pyridine-based polyamino-polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd(3+) and near-infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln(3+) complexes, as assessed by pH potentiometric measurements, are in the range log K(LnL)=17-19, with a high selectivity for lanthanides over Ca(2+), Cu(2+), and Zn(2+). The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd(3+) chelates. The water exchange of the Gd(3+) complexes (k(ex)(298)=7.7-9.3×10(6) s(-1)) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV(≠)=7.2-8.8 cm(3) mol(-1)). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl-triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet-state energies associated with good quantum yields for both Nd(3+) and Yb(3+) complexes. Cellular and in vivo toxicity studies in mice evidenced the non-toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd(3+) and the luminescent lanthanide complexes, respectively.
Microscopy and Microanalysis | 2010
Frédéric Jamme; Sandrine Villette; Alexandre Giuliani; Valérie Rouam; Frank Wien; Bruno Lagarde; Matthieu Réfrégiers
Use of deep ultraviolet (DUV, below 350 nm) fluorescence opens up new possibilities in biology because it does not need external specific probes or labeling but instead allows use of the intrinsic fluorescence that exists for many biomolecules when excited in this wavelength range. Indeed, observation of label free biomolecules or active drugs ensures that the label will not modify the biolocalization or any of its properties. In the past, it has not been easy to accomplish DUV fluorescence imaging due to limited sources and to microscope optics. Two worlds were coexisting: the spectrofluorometric measurements with full spectrum information with DUV excitation, which lacked high-resolution localization, and the microscopic world with very good spatial resolution but poor spectral resolution for which the wavelength range was limited to 350 nm. To combine the advantages of both worlds, we have developed a DUV fluorescence microscope for cell biology coupled to a synchrotron beamline, providing fine tunable excitation from 180 to 600 nm and full spectrum acquired on each point of the image, to study DUV excited fluorescence emitted from nanovolumes directly inside live cells or tissue biopsies.
Inorganic Chemistry | 2012
Fabien Caillé; Célia S. Bonnet; Frédéric Buron; Sandrine Villette; Lothar Helm; Stéphane Petoud; Franck Suzenet; Éva Tóth
In the objective of developing ligands that simultaneously satisfy the requirements for MRI contrast agents and near-infrared emitting optical probes that are suitable for imaging, three isoquinoline-based polyaminocarboxylate ligands, L1, L2 and L3, have been synthesized and the corresponding Gd(3+), Nd(3+) and Yb(3+) complexes investigated. The specific challenge of the present work was to create NIR emitting agents which (i) have excitation wavelengths compatible with biological applications and (ii) are able to emit a sufficient number of photons to ensure sensitive NIR detection for microscopic imaging. Here we report the first observation of a NIR signal arising from a Ln(3+) complex in aqueous solution in a microscopy setup. The lanthanide complexes have high thermodynamic stability (log K(LnL) =17.7-18.7) and good selectivity for lanthanide ions versus the endogenous cations Zn(2+), Cu(2+), and Ca(2+) thus preventing transmetalation. A variable temperature and pressure (17)O NMR study combined with nuclear magnetic relaxation dispersion measurements yielded the microscopic parameters characterizing water exchange and rotation. Bishydration of the lanthanide cation in the complexes, an important advantage to obtain high relaxivity for the Gd(3+) chelates, has been demonstrated by (17)O chemical shifts for the Gd(3+) complexes and by luminescence lifetime measurements for the Yb(3+) analogues. The water exchange on the three Gd(3+) complexes is considerably faster (k(ex)(298) = (13.9-15.4) × 10(6) s(-1)) than on commercial Gd(3+)-based contrast agents and proceeds via a dissociative mechanism, as evidenced by the large positive activation volumes for GdL1 and GdL2 (+10.3 ± 0.9 and +10.6 ± 0.9 cm(3) mol(-1), respectively). The relaxivity of GdL1 is doubled at 40 MHz and 298 K in fetal bovine serum (r(1) = 16.1 vs 8.5 mM(-1) s(-1) in HEPES buffer), due to hydrophobic interactions between the chelate and serum proteins. The isoquinoline core allows for the optimization of the optical properties of the luminescent lanthanide complexes in comparison to the pyridinic analogues and provides significant shifts of the excitation energies toward lower values which therefore become more adapted for biological applications. L2 and L3 bear two methoxy substituents on the aromatic core in ortho and para positions, respectively, that further modulate their electronic structure. The Nd(3+) and Yb(3+) complexes of the ligand L3, which incorporates the p-dimethoxyisoquinoline moiety, can be excited up to 420 nm. This wavelength is shifted over 100 nm toward lower energy in comparison to the pyridine-based analogue. The luminescence quantum yields of the Nd(3+) (0.013-0.016%) and Yb(3+) chelates (0.028-0.040%) are in the range of the best nonhydrated complexes, despite the presence of two inner sphere water molecules. More importantly, the 980 nm NIR emission band of YbL3 was detected with a good sensitivity in a proof of concept microscopy experiment at a concentration of 10 μM in fetal bovine serum. Our results demonstrate that even bishydrated NIR lanthanide complexes can emit a sufficient number of photons to ensure sensitive detection in practical applications. In particular, these ligands containing an aromatic core with coordinating pyridine nitrogen can be easily modified to tune the optical properties of the NIR luminescent lanthanide complexes while retaining good complex stability and MRI characteristics for the Gd(3+) analogues. They constitute a highly versatile platform for the development of bimodal MR and optical imaging probes based on a simple mixture of Gd(3+) and Yb(3+)/Nd(3+) complexes using an identical chelator. Given the presence of two inner sphere water molecules, important for MRI applications of the corresponding Gd(3+) analogues, this result is particularly exciting and opens wide perspectives not only for NIR imaging based on Ln(3+) ions but also for the design of combined NIR optical and MRI probes.
Journal of Physical Chemistry B | 2011
Ling Fu; Sandrine Villette; Stéphane Petoud; Felix Fernandez-Alonso; Marie-Louise Saboungi
The present work investigates the effects of H/D isotopic substitution on the structural and thermodynamic stability of bovine serum albumin (BSA) in aqueous solution over the temperature range of 5-90 °C. Using far-ultraviolet circular dichroism, we have compared protein unfolding pathways in H(2)O and D(2)O. Our results show that BSA possesses similar conformations in H(2)O and D(2)O at temperatures below 50 °C but follows different unfolding pathways at higher temperatures. The presence of D(2)O retards the occurrence of irreversible thermal denaturation in BSA, as evidenced by a higher onset temperature of 58 °C, in contrast to 50 °C in H(2)O. D(2)O exhibits a protective effect on the domain structure during the early stages of domain denaturation. Following incubation at 90 °C over a period of minutes, D(2)O causes a rapid aggregation of BSA molecules. This behavior is not observed in H(2)O solutions. Meanwhile, H/D substitution does not influence the reversible structural transformation of the protein in a significant manner. Partly renatured BSA in H(2)O and D(2)O undergoes very similar reversible structural transformations during a second heating cycle.
Chemical Communications | 2010
Célia S. Bonnet; Laurent Pellegatti; Frédéric Buron; Chad M. Shade; Sandrine Villette; Vojtěch Kubíček; Gérald Guillaumet; Franck Suzenet; Stéphane Petoud; Éva Tóth
We propose a new approach for the versatile sensitization of luminescent lanthanide cations. A hydrophobic chromophore is incorporated into a micellar assembly formed by the amphiphilic lanthanide chelate. The sensitizer to lanthanide energy transfer occurs between the two moieties without covalent linkage.
Journal of Physical Chemistry B | 2008
Martin Byrdin; Sandrine Villette; Agathe Espagne; André P. M. Eker; Klaus Brettel
Transient absorption spectroscopy is a powerful tool for studying biological electron-transfer chains, provided that their members give rise to distinct changes of their absorption spectra. There are, however, chains that contain identical molecules, so that electron transfer between them does not change net absorption. An example is the chain flavin adenine dinucleotide (FAD)-W382-W359-W306 in DNA photolyase from E. coli. Upon absorption of a photon, the excited state of FADH* (neutral FAD radical) abstracts an electron from the tryptophan residue W382 in approximately 30 ps (monitored by transient absorption). The cation radical W382*+ is presumably reduced by W359 and W359*+ by W306. The latter two reactions could not be monitored directly so far because the absorption changes of the partners compensate in each step. To overcome this difficulty, we used linearly polarized flashes for excitation of FADH*, thus inducing a preferential axis in the a priori unoriented sample (photoselection). Because W359 and W306 are very differently oriented within the protein, detection with polarized light should allow us to distinguish them. To demonstrate this, W306 was mutated to redox-inert phenylalanine. We show that the resulting anisotropy spectrum of the initial absorption changes (measured at 10 ns time resolution) is in line with W359 being oxidized. The corresponding spectrum in wildtype photolyase is clearly different and identifies W306 as the oxidized species. These findings set an upper limit of 10 ns for electron transfer from W306 to W359*+ in wildtype DNA photolyase, consistent with previous, more indirect evidence [Aubert, C.; Vos, M. H.; Mathis, P.; Eker, A. P. M.; Brettel, K. Nature 2000, 405, 586-590].
Small | 2013
Sara Lacerda; Célia S. Bonnet; Agnès Pallier; Sandrine Villette; Frédéric Foucher; Frances Westall; Frédéric Buron; Franck Suzenet; Chantal Pichon; Stéphane Petoud; Éva Tóth
Near-infrared emitting, magnetic particles for combined optical and MR detection based on liposomes or artificial lipoproteins are presented. They provide a novel strategy for the luminescence sensitization of lanthanide cations (Yb(3+) , Nd(3+) ) without covalent bonds between the chromophore and the lanthanide, and provide an unambiguous tool for monitoring the integrity of the liponanoparticles, via emission in the NIR region.
PLOS ONE | 2011
Eric Batard; Frédéric Jamme; Sandrine Villette; Cédric Jacqueline; Marie-France de la Cochetière; Jocelyne Caillon; Matthieu Réfrégiers
The diffusion of antibiotics in endocarditis vegetation bacterial masses has not been described, although it may influence the efficacy of antibiotic therapy in endocarditis. The objective of this work was to assess the diffusion of ofloxacin in experimental endocarditis vegetation bacterial masses using synchrotron-radiation UV fluorescence microspectroscopy. Streptococcal endocarditis was induced in 5 rabbits. Three animals received an unique IV injection of 150 mg/kg ofloxacin, and 2 control rabbits were left untreated. Two fluorescence microscopes were coupled to a synchrotron beam for excitation at 275 nm. A spectral microscope collected fluorescence spectra between 285 and 550 nm. A second, full field microscope was used with bandpass filters at 510–560 nm. Spectra of ofloxacin-treated vegetations presented higher fluorescence between 390 and 540 nm than control. Full field imaging showed that ofloxacin increased fluorescence between 510 and 560 nm. Ofloxacin diffused into vegetation bacterial masses, although it accumulated in their immediate neighborhood. Fluorescence images additionally suggested an ofloxacin concentration gradient between the vegetation peripheral and central areas. In conclusion, ofloxacin diffuses into vegetation bacterial masses, but it accumulates in their immediate neighborhood. Synchrotron radiation UV fluorescence microscopy is a new tool for assessment of antibiotic diffusion in the endocarditis vegetation bacterial masses.