Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandrine Zahn is active.

Publication


Featured researches published by Sandrine Zahn.


The FASEB Journal | 2011

Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat

Iman Momken; Laurence Stevens; Audrey Bergouignan; Dominique Desplanches; Floriane Rudwill; Alexandre Zahariev; Sandrine Zahn; T. Peter Stein; J. L. Sébédio; Estelle Pujos-Guillot; Maurice Falempin; Chantal Simon; Véronique Coxam; Tany Andrianjafiniony; Guillemette Gauquelin-Koch; Florence Picquet; Stéphane Blanc

Long‐term spaceflight induces hypokinesia and hypodynamia, which, along microgravity per se, result in a number of significant physiological alterations, such as muscle atrophy, force reduction, insulin resistance, substrate use shift from fats to carbohydrates, and bone loss. Each of these adaptations could turn to serious health deterioration during the long‐term spaceflight needed for planetary exploration. We hypothesized that resveratrol (RES), a natural polyphenol, could be used as a nutritional countermeasure to prevent muscle metabolic and bone adaptations to 15 d of rat hindlimb unloading. RES treatment maintained a net protein balance, soleus muscle mass, and soleus muscle maximal force contraction. RES also fully maintained soleus mitochondrial capacity to oxidize palmitoyl‐carnitine and reversed the decrease of the glutathione vs. glutathione disulfide ratio, a biomarker of oxidative stress. At the molecular level, the protein content of Sirt‐1 and COXIV in soleus muscle was also preserved. RES further protected whole‐body insulin sensitivity and lipid trafficking and oxidation, and this was likely associated with the maintained expression of FAT/CD36, CPT‐1, and peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α) in muscle. Finally, chronic RES supplementation maintained the bone mineral density and strength of the femur. For the first time, we report a simple countermeasure that prevents the deleterious adaptations of the major physiological functions affected by mechanical unloading. RES could thus be envisaged as a nutritional counter‐measure for spaceflight but remains to be tested in humans.—Momken, I., Stevens, L., Bergouignan, A., Desplanches, D., Rudwill, F., Chery, I., Zahariev, A., Zahn, S., Stein, T. P., Sebedio, J. L., Pujos‐Guillot, E., Falempin, M., Simon, C., Coxam, V., Andrianjafiniony, T., Gauquelin‐Koch, G., Picquet, F., Blanc, S. Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J. 25, 3646–3660 (2011). www.fasebj.org


Methods in Ecology and Evolution | 2014

Measuring telomere length and telomere dynamics in evolutionary biology and ecology

Daniel H. Nussey; Duncan Martin Baird; Emma L. B. Barrett; Winnie Boner; Jennifer Fairlie; Neil J. Gemmell; Nils Hartmann; Thorsten Horn; Mark F. Haussmann; Mats Olsson; Christopher Turbill; Simon Verhulst; Sandrine Zahn; Pat Monaghan

Telomeres play a fundamental role in the protection of chromosomal DNA and in the regulation of cellular senescence. Recent work in human epidemiology and evolutionary ecology suggests adult telomere length (TL) may reflect past physiological stress and predict subsequent morbidity and mortality, independent of chronological age. Several different methods have been developed to measure TL, each offering its own technical challenges. The aim of this review is to provide an overview of the advantages and drawbacks of each method for researchers, with a particular focus on issues that are likely to face ecologists and evolutionary biologists collecting samples in the field or in organisms that may never have been studied in this context before. We discuss the key issues to consider and wherever possible try to provide current consensus view regarding best practice with regard to sample collection and storage, DNA extraction and storage, and the five main methods currently available to measure TL. Decisions regarding which tissues to sample, how to store them, how to extract DNA, and which TL measurement method to use cannot be prescribed, and are dependent on the biological question addressed and the constraints imposed by the study system. What is essential for future studies of telomere dynamics in evolution and ecology is that researchers publish full details of their methods and the quality control thresholds they employ.


Heredity | 2015

Maternal telomere length inheritance in the king penguin

Sophie Reichert; Emilio R. Rojas; Sandrine Zahn; Jean Patrice Robin; François Criscuolo; Sylvie Massemin

Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks’ age.


BMC Ecology | 2012

Effects of brood size manipulation and common origin on phenotype and telomere length in nestling collared flycatchers

Marie Voillemot; Kathryn Hine; Sandrine Zahn; François Criscuolo; Lars Gustafsson; Blandine Doligez; Pierre Bize

BackgroundEvidence is accumulating that telomere length is a good predictor of life expectancy, especially early in life, thus calling for determining the factors that affect telomere length at this stage. Here, we investigated the relative influence of early growth conditions and origin (genetics and early maternal effects) on telomere length of collared flycatchers (Ficedula albicollis) at fledging. We experimentally transferred hatchlings among brood triplets to create reduced, control (i.e. unchanged final nestling number) and enlarged broods.ResultsAlthough our treatment significantly affected body mass at fledging, we found no evidence that increased sibling competition affected nestling tarsus length and telomere length. However, mixed models showed that brood triplets explained a significant part of the variance in body mass (18%) and telomere length (19%), but not tarsus length (13%), emphasizing that unmanipulated early environmental factors influenced telomere length. These models also revealed low, but significant, heritability of telomere length (h2 = 0.09). For comparison, the heritability of nestling body mass and tarsus length was 0.36 and 0.39, respectively, which was in the range of previously published estimates for those two traits in this species.ConclusionThose findings in a wild bird population demonstrate that telomere length at the end of the growth period is weakly, but significantly, determined by genetic and/or maternal factors taking place before hatching. However, we found no evidence that the brood size manipulation experiment, and by extension the early growth conditions, influenced nestling telomere length. The weak heritability of telomere length suggests a close association with fitness in natural populations.


Frontiers in Ecology and Evolution | 2014

Increased brood size leads to persistent eroded telomeres

Sophie Reichert; Antoine Stier; Sandrine Zahn; Mathilde Arrivé; Pierre Bize; Sylvie Massemin; François Criscuolo

Costs of reproduction can be divided in mandatory costs coming from physiological, metabolic and anatomical changes required to sustain reproduction itself, and in investment-dependent costs that are likely to become apparent when reproductive efforts are exceeding what organisms were prepared to sustain. Interestingly, recent data showed that entering reproduction enhanced breeders’ telomere loss, but no data explored so far the impact of reproductive investment. Telomeres protect the ends of eukaryote chromosomes. Shortened telomeres were associated with shorter lifespan, telomere erosion being then proposed to powerfully quantify life’s insults. Here, we experimentally manipulated brood size in order to modify reproductive investment of adult zebra finches (Taeniopygia guttata) below or beyond their (optimal) starting investment and tested the consequences of our treatment on parents’ telomere dynamics. We show that an increased brood size led to a reduction in telomere lengths in both parents compared to control and to parents raising a reduced brood. This greater telomere erosion was detected in parents immediately after the reproductive event and the telomere length difference persisted up to one year later. However, we did not detect any effects of brood size manipulation on annual survival of parents kept under laboratory conditions. In addition, telomere lengths at the end of reproduction were not associated with annual survival. Altogether, although our findings highlight that fast telomere erosion can come as a cost of brood size manipulation, they provide mixed correlative support to the emerging hypothesis that telomere erosion could account for the links between high reproductive investment and longevity.


PLOS ONE | 2012

Telomeres, Age and Reproduction in a Long-Lived Reptile

Virginie Plot; François Criscuolo; Sandrine Zahn; Jean-Yves Georges

A major interest has recently emerged in understanding how telomere shortening, mechanism triggering cell senescence, is linked to organism ageing and life history traits in wild species. However, the links between telomere length and key history traits such as reproductive performances have received little attention and remain unclear to date. The leatherback turtle Dermochelys coriacea is a long-lived species showing rapid growth at early stages of life, one of the highest reproductive outputs observed in vertebrates and a dichotomised reproductive pattern related to migrations lasting 2 or 3 years, supposedly associated with different environmental conditions. Here we tested the prediction of blood telomere shortening with age in this species and investigated the relationship between blood telomere length and reproductive performances in leatherback turtles nesting in French Guiana. We found that blood telomere length did not differ between hatchlings and adults. The absence of blood telomere shortening with age may be related to an early high telomerase activity. This telomere-restoring enzyme was formerly suggested to be involved in preventing early telomere attrition in early fast-growing and long-lived species, including squamate reptiles. We found that within one nesting cycle, adult females having performed shorter migrations prior to the considered nesting season had shorter blood telomeres and lower reproductive output. We propose that shorter blood telomeres may result from higher oxidative stress in individuals breeding more frequently (i.e., higher costs of reproduction) and/or restoring more quickly their body reserves in cooler feeding areas during preceding migration (i.e., higher foraging costs). This first study on telomeres in the giant leatherback turtle suggests that blood telomere length predicts not only survival chances, but also reproductive performances. Telomeres may therefore be a promising new tool to evaluate individual reproductive quality which could be useful in such species of conservation concern.


PLOS ONE | 2013

Telomere length correlations among somatic tissues in adult zebra finches.

Sophie Reichert; François Criscuolo; Elodie Verinaud; Sandrine Zahn; Sylvie Massemin

Telomeres are repetitive non coding DNA sequences located at the end of eukaryotic chromosomes, which maintain the integrity of the genome by hiding the chromosome ends from being recognised as double stranded breaks. Telomeres are emerging as biomarkers for ageing and survival, and are susceptible to reflect different individual life history trajectories. In particular, the telomere length with which one starts in life has been shown to be linked with individual life-long survival, suggesting that telomere dynamics can be a proxy for individual fitness and thereby be implicated in evolutionary trade-offs. As a consequence, an increasing number of studies were conducted on telomeres in the fields of ecology and evolutionary biology, in which telomere length was almost exclusively measured from blood samples. However, not only do the number of repeats of the telomeric sequences vary among species, but also within species with great inter-individual telomere lengths variability with age, tissues, and chromosomes. This raises the issue of the exact biological meaning of telomere measurement in blood cells and stimulated the study of the correlation of telomere lengths among tissues over age. By measuring telomere length in adult zebra finches (Taeniopygia guttata) in different somatic tissues displaying variable cell turnovers (bone marrow, brain, spleen, pectoral muscle, heart, liver and in red blood cells), we checked that the measure of telomere length in red blood cells is related to telomere lengths in the other tissues. Here we show significant relationships between the telomere lengths of red blood cells and several somatic tissues at adulthood. As red blood cells are easily accessible and suitable for the longitudinal monitoring of the individual rate of telomere loss, our study confirms that telomere length measured in red blood cells could serve as a surrogate for telomere length in the whole avian organism.


The Journal of Experimental Biology | 2015

Immediate and delayed effects of growth conditions on ageing parameters in nestling zebra finches

Sophie Reichert; François Criscuolo; Sandrine Zahn; Mathilde Arrivé; Pierre Bize; Sylvie Massemin

Conditions experienced during development and growth are of crucial importance as they can have a significant influence on the optimisation of life histories. Indeed, the ability of an organism to grow fast and achieve a large body size often confers short- and long-term fitness benefits. However, there is good evidence that organisms do not grow at their maximal rates as growth rates seem to have potential costs on subsequent lifespan. There are several potential proximate causes of such a reduced lifespan. Among them, one emerging hypothesis is that growth impacts adult survival and/or longevity through a shared, end point, ageing mechanism: telomere erosion. In this study, we manipulated brood size in order to investigate whether rapid growth (chicks in reduced broods) is effectively done at the cost of a short- (end of growth) and long-term (at adulthood) increase of oxidative damage and telomere loss. Contrary to what we expected, chicks from the enlarged broods displayed more oxidative damage and had shorter telomeres at the end of the growth period and at adulthood. Our study extends the understanding of the proximate mechanisms involved in the trade-off between growth and ageing. It highlights that adverse environmental conditions during growth can come at a cost via transient increased oxidative stress and pervasive eroded telomeres. Indeed, it suggests that telomeres are not only controlled by intrinsic growth rates per se but also may be under the control of some extrinsic environmental factors, which could complicate our understanding of the growth–ageing interaction.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes.

Sylvain Giroud; Sandrine Zahn; François Criscuolo; Stéphane Blanc; Christopher Turbill; Thomas Ruf

Torpor is thought to slow age-related processes and to sustain growth and fattening of young individuals. Energy allocation into these processes represents a challenge for juveniles, especially for those born late in the season. We tested the hypothesis that late-born juvenile garden dormice (Eliomys quercinus) fed ad libitum (‘AL’, n = 9) or intermittently fasted (‘IF’, n = 9) use short torpor bouts to enhance growth and fat accumulation to survive winter. IF juveniles displayed more frequent and longer torpor bouts, compared with AL individuals before hibernation. Torpor frequency correlated negatively with energy expenditure and water turnover. Hence, IF juveniles gained mass at the same rate, reached similar pre-hibernation fattening and displayed identical hibernating patterns and mass losses as AL animals. We found no group differences in relative telomere length (RTL), an indicator of ageing, during the period of highest summer mass gain, despite greater torpor use by IF juveniles. Percentage change in RTL was negatively associated with mean and total euthermic durations among all individuals during hibernation. We conclude that torpor use promotes fattening in late-born juvenile dormice prior to hibernation. Furthermore, we provided the first evidence for a functional link between time spent in euthermy and ageing processes over winter.


Proceedings of the Royal Society B: Biological Sciences | 2015

Mother–offspring and nest-mate resemblance but no heritability in early-life telomere length in white-throated dippers

Philipp J. J. Becker; Sophie Reichert; Sandrine Zahn; Johann Hegelbach; Sylvie Massemin; Lukas F. Keller; Erik Postma; François Criscuolo

Telomeres are protective DNA–protein complexes located at the ends of eukaryotic chromosomes, whose length has been shown to predict life-history parameters in various species. Although this suggests that telomere length is subject to natural selection, its evolutionary dynamics crucially depends on its heritability. Using pedigree data for a population of white-throated dippers (Cinclus cinclus), we test whether and how variation in early-life relative telomere length (RTL, measured as the number of telomeric repeats relative to a control gene using qPCR) is transmitted across generations. We disentangle the relative effects of genes and environment and test for sex-specific patterns of inheritance. There was strong and significant resemblance among offspring sharing the same nest and offspring of the same cohort. Furthermore, although offspring resemble their mother, and there is some indication for an effect of inbreeding, additive genetic variance and heritability are close to zero. We find no evidence for a role of either maternal imprinting or Z-linked inheritance in generating these patterns, suggesting they are due to non-genetic maternal and common environment effects instead. We conclude that in this wild bird population, environmental factors are the main drivers of variation in early-life RTL, which will severely bias estimates of heritability when not modelled explicitly.

Collaboration


Dive into the Sandrine Zahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillemette Gauquelin-Koch

Centre National D'Etudes Spatiales

View shared research outputs
Top Co-Authors

Avatar

Quentin Schull

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Stéphane Blanc

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge