Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandro Ghisla is active.

Publication


Featured researches published by Sandro Ghisla.


Science | 2012

The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone

Adrian Alder; Muhammad Jamil; Mattia Marzorati; Mark Bruno; Martina Vermathen; Peter Bigler; Sandro Ghisla; Harro J. Bouwmeester; Peter Beyer; Salim Al-Babili

Making Carlactone Germination of parasitic witchweeds depends on strigolactones, which also regulate plant branching and signal in the context of mycorrhizal symbioses. The biosynthetic pathways that lead to strigolactones are founded in carotenoid biosynthesis, but further steps have been obscure. Alder et al. (p. 1348) have now identified a biochemical pathway that generates a strigolactone-like compound, carlactone, which shows biological actions similar to those of strigolactone. Elucidation of the biosynthetic pathway of a new plant hormone variant that may be useful in agricultural settings is shown. Strigolactones, phytohormones with diverse signaling activities, have a common structure consisting of two lactones connected by an enol-ether bridge. Strigolactones derive from carotenoids via a pathway involving the carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8) and the iron-binding protein D27. We show that D27 is a β-carotene isomerase that converts all-trans-β-carotene into 9-cis-β-carotene, which is cleaved by CCD7 into a 9-cis–configured aldehyde. CCD8 incorporates three oxygens into 9-cis-β-apo-10′-carotenal and performs molecular rearrangement, linking carotenoids with strigolactones and producing carlactone, a compound with strigolactone-like biological activities. Knowledge of the structure of carlactone will be crucial for understanding the biology of strigolactones and may have applications in combating parasitic weeds.


The EMBO Journal | 2000

The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site

Peter D. Pawelek; Jaime Cheah; Rene Coulombe; Peter Macheroux; Sandro Ghisla; Alice Vrielink

The structure of L‐amino acid oxidase (LAAO) from Calloselasma rhodostoma has been determined to 2.0 Å resolution in the presence of two ligands: citrate and o‐aminobenzoate (AB). The protomer consists of three domains: an FAD‐binding domain, a substrate‐binding domain and a helical domain. The interface between the substrate‐binding and helical domains forms a 25 Å long funnel, which provides access to the active site. Three AB molecules are visible within the funnel of the LAAO–AB complex; their orientations suggest the trajectory of the substrate to the active site. The innermost AB molecule makes hydrogen bond contacts with the active site residues, Arg90 and Gly464, and the aromatic portion of the ligand is situated in a hydrophobic pocket. These contacts are proposed to mimic those of the natural substrate. Comparison of LAAO with the structure of mammalian D‐amino acid oxidase reveals significant differences in their modes of substrate entry. Furthermore, a mirror‐symmetrical relationship between the two substrate‐binding sites is observed which facilitates enantiomeric selectivity while preserving a common arrangement of the atoms involved in catalysis.


Apoptosis | 2006

Mechanisms of cell death induction by L-amino acid oxidase, a major component of ophidian venom

Sudharsana Rao Ande; Phaneeswara Rao Kommoju; Sigrid Draxl; Michael Murkovic; Peter Macheroux; Sandro Ghisla; Elisa Ferrando-May

L-amino acid oxidase (LAAO) from the Malayan pit viper induces both necrosis and apoptosis in Jurkat cells. Cell death by necrosis is attributed to H2O2 produced by oxidation of α-amino acids. In the presence of catalase that effectively scavenges H2O2, a switch to apoptosis is observed. The major factors contributing to apoptosis are proposed to be: (i) generation of toxic intermediates from fetal calf serum (ii) binding and internalization of LAAO. The latter process appears to be mediated by the glycan moiety of the enzyme as desialylation reduces cytotoxicity. D-amino acid oxidase (DAAO), which catalyzes the same reaction as LAAO but lacks glycosylation, triggers necrosis as a consequence of H2O2 production but not apoptosis in the presence of catalase. Thus induction of cell death by LAAO appears to involve both the generation of H2O2 and the molecular interaction of the glycan moiety of the enzyme with structures at the cell surface.


Biochimica et Biophysica Acta | 1993

Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation

Peter Bross; Brage A. Andersen; Vibeke Winter; Franz Kräutle; Thomas G. Jensen; Andreas Nandy; Steen Kølvraa; Sandro Ghisla; Lars Bolund; Niels Gregersen

The influence of co-overexpression of the bacterial chaperonins GroEL and GroES on solubility, tetramer formation and enzyme activity of three variants of heterologously-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) was analysed in order to investigate the molecular mechanism underlying MCAD deficiency caused by the prevalent K304E mutation. Depending on which of the three amino acids--lysine (wild-type), glutamic acid (K304E) or glutamine (K304Q) are present at position 304 of the mature polypeptide, three different patterns were observed in our assay system: (i) solubility, tetramer formation and yield of enzyme activity of wild-type MCAD is largely independent of GroESL co-overexpression; (ii) the larger part of the K304Q mutant is insoluble without and solubility is enhanced with GroESL co-overexpression; solubility correlates with the amount of tetramer detected and the enzyme activity measured as observed for the wild-type protein. (iii) Solubility of the K304E mutant is in a similar fashion GroESL responsive as the K304Q mutant, but the amount of tetramer observed and the enzyme activity measured do not correlate with the amount of soluble K304E MCAD protein detected in Western blotting. In a first attempt to estimate the specific activity, we show that tetrameric K304E and K304Q mutant MCAD display a specific activity in the range of the wild-type enzyme. Taken together, our results strongly suggest, that the K304E mutation primarily impairs the rate of folding and subunit assembly. Based on the data presented, we propose that lysine-304 is important for the folding pathway and that an exchange of this amino acid both to glutamine or glutamic acid leads to an increased tendency to misfold/aggregate. Furthermore, exchange of lysine-304 with an amino acid with negative charge at position 304 (glutamic acid) but not with a neutral charge (glutamine) negatively affects conversion to active tetramers. A possible explanation for this latter effect--charge repulsion upon subunit docking--is discussed.


Biochemical and Biophysical Research Communications | 1990

7-SUBSTITUTED PTERINS : FORMATION DURING PHENYLALANINE HYDROXYLATION IN THE ABSENCE OF DEHYDRATASE

Hans-Christoph Curtius; Carmen Adler; Igor Rebrin; Claus W. Heizmann; Sandro Ghisla

Previously we described a new form of human hyperphenylalaninemia characterized by the formation of 7-substituted pterins. We present evidence strongly suggesting that the 7-substituted pterins are formed by rearrangement of 6-substituted pterins. This rearrangement occurs during the phenylalanine hydroxylase reaction cycle which normally involves the enzymes phenylalanine hydroxylase, pterin-4a-OH-dehydratase, and q-dihydropterin reductase, specifically in the absence of dehydratase activity. We conclude that formation of 7-substituted pterins in humans is a consequence of an absence of dehydratase activity, which might result from a genetic defect. A chemical mechanism for this rearrangement is presented. Our results also suggest that tetrahydroneopterin can be a cofactor for the phenylalanine hydroxylase system in vivo.


Journal of Biological Chemistry | 2001

Cholesterol Oxidase from Brevibacterium sterolicum THE RELATIONSHIP BETWEEN COVALENT FLAVINYLATION AND REDOX PROPERTIES

Laura Motteran; Mirella S. Pilone; Gianluca Molla; Sandro Ghisla; Loredano Pollegioni

Brevibacterium sterolicum possesses two forms of cholesterol oxidase, one containing noncovalently bound FAD, the second containing a FAD covalently linked to His69of the protein backbone. The functional role of the histidyl-FAD bond in the latter cholesterol oxidase was addressed by studying the properties of the H69A mutant in which the FAD is bound tightly, but not covalently, and by comparison with native enzyme. The mutant retains catalytic activity, but with a turnover rate decreased 35-fold; the isomerization step of the intermediate 3-ketosteroid to the final product is also preserved. Stabilization of the flavin semiquinone and binding of sulfite are markedly decreased, this correlates with a lower midpoint redox potential (−204 mV compared with −101 mV for wild-type). Reconstitution with 8-chloro-FAD led to a holoenzyme form of H69A cholesterol oxidase with a midpoint redox potential of −160 mV. In this enzyme form, flavin semiquinone is newly stabilized, and a 3.5-fold activity increase is observed, this mimicking the thermodynamic effects induced by the covalent flavin linkage. It is concluded that the flavin 8α-linkage to a (N1)histidine is a pivotal factor in the modulation of the redox properties of this cholesterol oxidase to increase its oxidative power.


Human Genetics | 1991

Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: identification of a lys329 to glu mutation in the MCAD gene, and expression of inactive mutant enzyme protein in E. coli

Niels Gregersen; Brage S. Andresen; Peter Bross; Vibeke Winter; Niels Rüdiger; Stefan Engst; Ernst Christensen; Daniel P. Kelly; Arnold W. Strauss; Steen Kølvraa; Lars Bolund; Sandro Ghisla

SummaryA series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct size of 2.4 kb, indicated a point-mutation in the coding region of the MCAD gene to be disease-causing. Consequently, cloning and DNA sequencing of polymerase chain reaction (PCR) amplified complementary DNA (cDNA) from messenger RNA of fibroblasts from the patient and family members were performed. All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing their obligate carrier status. Allelic homozygosity in the patient and heterozygosity for the mutation in the parents were established by a modified PCR reaction, introducing a cleavage site for the restriction endonuclease NcoI into amplified genomic DNA containing G985. The same assay consistently revealed A985 in genomic DNA from 26 control individuals. The A to G mutation was introduced into an E. coli expression vector producing mutant MCAD, which was demonstrated to be inactive, probably because of the inability to form active tetrameric MCAD. All the experiments are consistent with the contention that the G985 mutation, resulting in a lysine to glutamate shift at position 329 in the MCAD polypeptide chain, is the genetic cause of MCAD deficiency in this family. We found the same mutation in homozygous form in 11 out of 12 other patients with verified MCAD deficiency.


FEBS Journal | 2009

Cholesterol oxidase: biochemistry and structural features

Alice Vrielink; Sandro Ghisla

Cholesterol oxidases are bifunctional flavoenzymes that catalyze the oxidation of steroid substrates which have a hydroxyl group at the 3β position of the steroid ring system. The enzyme is found, in a wide range of bacterial species, in two forms: one with the FAD cofactor bound noncovalently to the enzyme; and one with the cofactor linked covalently to the protein. Here we discuss, compare and contrast the salient biochemical properties of the two forms of the enzyme. Specifically, the structural features are discussed that affect the redox potentials of the flavin cofactor, the chemical mechanism of substrate dehydrogenation by active‐center amino acid residues, the kinetic parameters of both types of enzymes and the reactivity of reduced enzymes with molecular dioxygen. The presence of a molecular tunnel that is proposed to serve in the access of dioxygen to the active site and mechanisms of its control by a ‘gate’ formed by amino acid residues are highlighted.


Molecular Genetics and Metabolism | 2002

Identification of isobutyryl-CoA dehydrogenase and its deficiency in humans

Tien V. Nguyen; Brage S. Andresen; Thomas J. Corydon; Sandro Ghisla; Nasser Abd-El Razik; Al-Walid A. Mohsen; Stephen D. Cederbaum; Diane S. Roe; Charles R. Roe; Nicolas J Lench; Jerry Vockley

The acyl-CoA dehydrogenases (ACDs) are a family of related enzymes that catalyze the alpha,beta-dehydrogenation of acyl-CoA esters. Two homologues active in branched chain amino acid metabolism have previously been identified. We have used expression in Escherichia coli to produce a previously uncharacterized ACD-like sequence (ACAD8) and define its substrate specificity. Purified recombinant enzyme had a k(cat)/K(m) of 0.8, 0.23, and 0.04 (microM(-1)s(-1)) with isobutyryl-CoA, (S) 2-methylbutyryl-CoA, and n-propionyl-CoA, respectively, as substrates. Thus, this enzyme is an isobutyryl-CoA dehydrogenase. A single patient has previously been described whose fibroblasts exhibit a specific deficit in the oxidation of valine. Amplified ACAD8 cDNA made from patient fibroblast mRNA was homozygous for a single nucleotide change (905G>A) in the ACAD8 coding region compared to the sequence from control cells. This encodes an Arg302Gln substitution in the full-length protein (position 280 in the mature protein), a position predicted by molecular modeling to be important in subunit interactions. The mutant enzyme was stable but inactive when expressed in E. coli. It was also stable and appropriately targeted to mitochondria, but inactive when expressed in mammalian cells. These data confirm further the presence of a separated ACD in humans specific to valine catabolism (isobutyryl-CoA dehydrogenase, IBDH), along with the first enzymatic and molecular confirmation of a deficiency of this enzyme in a patient.


Biochemical and Biophysical Research Communications | 1987

Purification of the yellow fluorescent protein from vibrio fischeri and identity of the flavin chromophore

P. Macheroux; K.U. Schmidt; P. Steinerstauch; Sandro Ghisla; P. Colepicolo; R. Buntic; J. W. Hastings

A low molecular weight protein (approximately 25,000 D) exhibiting a yellow fluorescence emission peaking at approximately 540 nm was isolated from Vibrio fischeri (strain Y-1) and purified to apparent homogeneity. FMN is the chromophore, but it exhibits marked red shifts in both the absorption (lambda max = 380, 460 nm) and the fluorescence emission. When added to purified luciferase from the same strain, which itself catalyzes an emission of blue-green light (lambda max approximately 495 nm), this protein induces a bright yellow luminescence (lambda max approximately 540 nm); this corresponds to the emission of the Y-1 strain in vivo. This yellow bioluminescence emission is thus ascribed to the interaction of these two proteins, and to the excitation of the singlet FMN bound to this fluorescent protein.

Collaboration


Dive into the Sandro Ghisla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Beyer

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brage S. Andresen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge