Sandro Norelli
Istituto Superiore di Sanità
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandro Norelli.
PLOS Pathogens | 2012
Iart Luca Shytaj; Sandro Norelli; Barbara Chirullo; Alessandro Della Corte; Matthew H. Collins; Jake Yalley-Ogunro; Jack Greenhouse; Nunzio Iraci; Edward P. Acosta; Maria Letizia Barreca; Mark G. Lewis; Andrea Savarino
Stably suppressed viremia during ART is essential for establishing reliable simian models for HIV/AIDS. We tested the efficacy of a multidrug ART (highly intensified ART) in a wide range of viremic conditions (103–107 viral RNA copies/mL) in SIVmac251-infected rhesus macaques, and its impact on the viral reservoir. Eleven macaques in the pre-AIDS stage of the disease were treated with a multidrug combination (highly intensified ART) consisting of two nucleosidic/nucleotidic reverse transcriptase inhibitors (emtricitabine and tenofovir), an integrase inhibitor (raltegravir), a protease inhibitor (ritonavir-boosted darunavir) and the CCR5 blocker maraviroc. All animals stably displayed viral loads below the limit of detection of the assay (i.e. <40 RNA copies/mL) after starting highly intensified ART. By increasing the sensitivity of the assay to 3 RNA copies/mL, viral load was still below the limit of detection in all subjects tested. Importantly, viral DNA resulted below the assay detection limit (<2 copies of DNA/5*105 cells) in PBMCs and rectal biopsies of all animals at the end of the follow-up, and in lymph node biopsies from the majority of the study subjects. Moreover, highly intensified ART decreased central/transitional memory, effector memory and activated (HLA-DR+) effector memory CD4+ T-cells in vivo, in line with the role of these subsets as the main cell subpopulations harbouring the virus. Finally, treatment with highly intensified ART at viral load rebound following suspension of a previous anti-reservoir therapy eventually improved the spontaneous containment of viral load following suspension of the second therapeutic cycle, thus leading to a persistent suppression of viremia in the absence of ART. In conclusion, we show, for the first time, complete suppression of viral load by highly intensified ART and a likely associated restriction of the viral reservoir in the macaque AIDS model, making it a useful platform for testing potential cures for AIDS.
AIDS | 2011
Mark G. Lewis; Sandrina DaFonseca; Nicolas Chomont; Anna Teresa Palamara; Maria Tardugno; Antonello Mai; Matthew H. Collins; Wendeline Wagner; Jake Yalley-Ogunro; Jack Greenhouse; Barbara Chirullo; Sandro Norelli; Enrico Garaci; Andrea Savarino
Objectives:A small pool of long-lived memory CD4+ T cells harboring the retroviral genome is one main obstacle to HIV eradication. We tested the impact of the gold compound, auranofin, on phenotype and viability of CD4+ T cells in vitro, and on persistence of lentiviral reservoir cells in vivo. Design:In-vitro and in-vivo study. The pro-differentiating effect of auranofin was investigated in human primary CD4+ T cells, and its capacity to deplete the viral DNA (vDNA) reservoir was tested in a pilot study involving six SIVmac251-infected macaques with viral loads stably suppressed by antiretroviral therapy (ART) (tenofovir/emtricitabine/raltegravir). The study was then amplified by intensifying ART using darunavir/r and including controls under intensified ART alone. All therapies were eventually suspended and viro-immunological parameters were monitored over time. Methods:Cell subpopulations were quantitated by flow cytometry following proper hematological analyses. Viral load and cell-associated vDNA were quantitated by Taqman real-time PCR. Results:In naïve, central memory and transitional memory CD4+ T cells, auranofin induced both phenotype changes and cell death which were more pronounced in the memory compartment. In the pilot study in vivo, auranofin transiently decreased the cell-associated vDNA reservoir in peripheral blood. When ART was intensified, a sustained decrease in vDNA was observed only in auranofin-treated monkeys but not in controls treated with intensified ART alone. After therapy suspension, only monkeys that had received auranofin showed a deferred and subsequently blunted viral load rebound. Conclusion:These findings represent a first step towards a remission of primate lentiviral infections.
Virology Journal | 2007
Livia Di Trani; Andrea Savarino; Laura Campitelli; Sandro Norelli; Simona Puzelli; Daniela D'Ostilio; Edoardo Vignolo; Isabella Donatelli; Antonio Cassone
Chloroquine is a 4-aminoquinoline previously used in malaria therapy and now becoming an emerging investigational antiviral drug due to its broad spectrum of antiviral activities. To explore whether the low pH-dependency of influenza A viruses might affect the antiviral effects of chloroquine at clinically achievable concentrations, we tested the antiviral effects of this drug on selected human and avian viruses belonging to different subtypes and displaying different pH requirements. Results showed a correlation between the responses to chloroquine and NH4Cl, a lysosomotropic agent known to increase the pH of intracellular vesicles. Time-of-addition experiments showed that the inhibitory effect of chloroquine was maximal when the drug had been added at the time of infection and was lost after 2 h post-infection. This timing approximately corresponds to that of virus/cell fusion. Moreover, there was a clear correlation between the EC50 of chloroquine in vitro and the electrostatic potential of the HA subunit (HA2) mediating the virus/cell fusion process. Overall, the present study highlights the critical importance of a host cell factor such as intravesicular pH in determining the anti-influenza activity of chloroquine and other lysosomotropic agents.
Retrovirology | 2010
Mark G. Lewis; Sandro Norelli; Matthew H. Collins; Maria Letizia Barreca; Nunzio Iraci; Barbara Chirullo; Jake Yalley-Ogunro; Jack Greenhouse; Fausto Titti; Enrico Garaci; Andrea Savarino
BackgroundIn this study we successfully created a new approach to ART in SIVmac251 infected nonhuman primates. This drug regimen is entirely based on drugs affecting the pre-integration stages of replication and consists of only two nucleotidic/nucleosidic reverse transcriptase inhibitors (Nt/NRTIs) and raltegravir, a promising new drug belonging to the integrase strand transfer inhibitor (INSTI) class.ResultsIn acutely infected human lymphoid CD4+ T-cell lines MT-4 and CEMx174, SIVmac251 replication was efficiently inhibited by raltegravir, which showed an EC90 in the low nanomolar range. This result was confirmed in primary macaque PBMCs and enriched CD4+ T cell fractions. In vivo monotherapy with raltegravir for only ten days resulted in reproducible decreases in viral load in two different groups of animals. When emtricitabine (FTC) and tenofovir (PMPA) were added to treatment, undetectable viral load was reached in two weeks, and a parallel increase in CD4 counts was observed. In contrast, the levels of proviral DNA did not change significantly during the treatment period, thus showing persistence of this lentiviral reservoir during therapy.ConclusionsIn line with the high conservation of the three main amino acids Y143, Q148 and N155 (responsible for raltegravir binding) and molecular docking simulations showing similar binding modes of raltegravir at the SIVmac251 and HIV-1 IN active sites, raltegravir is capable of inhibiting SIVmac251 replication both in tissue culture and in vivo. This finding may help to develop effective ART regimens for the simian AIDS model entirely based on drugs adopted for treatment in humans. This ART-treated AIDS nonhuman primate model could be employed to find possible strategies for virus eradication from the body.
Cell Death and Disease | 2013
Barbara Chirullo; Rossella Sgarbanti; Limongi D; Iart Luca Shytaj; Alvarez D; Das B; Boe A; DaFonseca S; Chomont N; Liotta L; Petricoin Ei; Sandro Norelli; Pelosi E; Enrico Garaci; Andrea Savarino; Anna Teresa Palamara
Central memory (TCM) and transitional memory (TTM) CD4+ T cells are known to be the major cellular reservoirs for HIV, as these cells can harbor a transcriptionally silent form of viral DNA that is not targeted by either the immune system or current antiretroviral drug regimens. In the present study, we explored the molecular bases of the anti-HIV reservoir effects of auranofin (AF), a pro-oxidant gold-based drug and a candidate compound for a cure of AIDS. We here show that TCM and TTM lymphocytes have lower baseline antioxidant defenses as compared with their naive counterpart. These differences are mirrored by the effects exerted by AF on T-lymphocytes: AF was able to exert a pro-differentiating and pro-apoptotic effect, which was more pronounced in the memory subsets. AF induced an early activation of the p38 mitogen-activated protein kinase (p38 MAPK) followed by mitochondrial depolarization and a final burst in intracellular peroxides. The pro-differentiating effect was characterized by a downregulation of the CD27 marker expression. Interestingly, AF-induced apoptosis was inhibited by pyruvate, a well-known peroxide scavenger, but pyruvate did not inhibit the pro-differentiating effect of AF, indicating that the pro-apoptotic and pro-differentiating effects involve different pathways. In conclusion, our results demonstrate that AF selectively targets the TCM/TTM lymphocyte subsets, which encompass the HIV reservoir, by affecting redox-sensitive cell death pathways.
Current HIV Research | 2008
Sandro Norelli; Sary El Daker; Daniela D'Ostilio; Federico Mele; Fabiola Mancini; Fabiana Taglia; Anna Ruggieri; Massimo Ciccozzi; Roberto Cauda; Alessandra Ciervo; Maria Letizia Barreca; Mauro Pistello; Mauro Bendinelli; Andrea Savarino
The feline AIDS model for HIV-1 treatment failed in the 1990s, due to structural features resembling protease inhibitor (PI) resistant HIV-1 variants. Widespread drug-resistance to PIs now invokes the possibility of rescuing feline immunodeficiency virus (FIV) as a model for PI treatment. We here analyzed susceptibility of FIV to second generation PIs, lopinavir, atazanavir, and the structurally unrelated non-peptidic PI tipranavir. We found that FIV protease resembles HIV-1 protease drug resistance mutations limiting binding of lopinavir and atazanavir but not tipranavir. All three PIs were found to inhibit FIV replication in a concentration-dependent manner, but only tipranavir inhibited FIV similarly to HIV-1. This drug inhibited FIV synergistically with ritonavir. Inhibition of protease activity was confirmed by Western blot analysis. In molecular docking simulations, tipranavir displayed energetically favorable interactions with the catalytic cavity of the mature dimeric FIV protease. The calculated hydrogen bond network was similar to that found in HIV-1 protease/tipranavir complexes and involved atoms in the protein backbone. We also modeled the interaction of tipranavir with an immature protease monomer, suggesting that inhibition of protease dimerization may be a secondary modality for FIV inhibition by tipranavir. In conclusion, tipranavir is the first FDA-approved non-reverse transcriptase inhibitor of HIV-1 to show anti-FIV properties. The tipranavir response by FIV may 1) support the idea of using FIV as a small animal model for PI-resistant HIV-1, thus expanding access to animal AIDS models; and 2) pave the way for development of novel broad-based inhibitors for treatment of drug resistant HIV-1.
Pathogenetics | 2015
Flavia De Bernardis; Silvia Arancia; Silvia Sandini; Sofia Graziani; Sandro Norelli
The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis.
Expert Opinion on Therapeutic Targets | 2009
Thea Bensi; Federico Mele; Massimo Ferretti; Sandro Norelli; Sary El Daker; Annalisa Chiocchetti; José M. Rojo; Roberto Cauda; Umberto Dianzani; Andrea Savarino
Objective: Cell infection by HIV-1 is inhibited by both the expression of CD38 and a soluble peptide (sCD38p) corresponding to its extracellular membrane-proximal amino acid sequence (amino acids 51 – 74). We show here the effects of PEG conjugation to sCD38p and provide new insights into the mechanisms behind the anti-HIV-1 effects of CD38 and derived peptides. Research design/methods: In-vitro and in-silico study. Results: PEGylation of sCD38p increased its ability to inhibit replication of HIV-1 in MT-4 cells and syncytia formation in cocultures of MT-2 and persistently HIV-1IIIB-infected H9IIIB cells. In silico modeling suggests that sCD38p and CD4 form stable heterodimers involving, among others, an interaction between lysine 57 (K57) of CD38 and a groove in the CD4 receptor, which, in CD4/gp120 complexes, is partially occupied by a lysine residue of the HIV-1 envelope glycoprotein. K57 substitution with a glycine in sCD38p impaired its ability to inhibit syncytia formation in MT-2/H9IIIB cell cocultures and gp120 binding to CD4 in a mouse T cell line expressing human but not mouse CD4. Conclusions: PEGylation significantly improves the anti-HIV-1 activity of sCD38p, whose effect is probably due to competition with gp120 for a common binding site on CD4 although other mechanisms cannot be excluded so far. The inhibitory concentrations of the sCD38p-PEG as well as its poor toxicity, merit further consideration in anti-HIV-1 strategies.
Expert Opinion on Therapeutic Patents | 2006
Andrea Savarino; Canio Buonavoglia; Sandro Norelli; Livia Di Trani; Antonio Cassone
Coronavirus replication offers several attractive targets for chemotherapy. These include: viral entry (inhibited by chloroquine and peptides); viral RNA (targeted by antisense approaches/RNAi); the main protease 3CLpro (inhibited by peptidic molecules such as HIV-1 protease inhibitors and miscellaneous compounds); the accessory protease(s) PLpro(s) (inhibited by zinc ions); RNA-dependent RNA polymerase (inhibited by aurintricarboxylic acid and antisense approaches); and helicase (inhibited by bananins). Chloroquine and HIV-1 protease inhibitors (with well-known toxicity profiles) should be considered for clinical tests if severe acute respiratory syndrome (SARS) re-emerges; however, there are other attractive compounds. Lessons should be learnt from AIDS research for choosing the best strategies.
Retrovirology | 2009
Andrea Savarino; Antonello Mai; Sandro Norelli; Sary El Daker; Sergio Valente; Dante Rotili; Lucia Altucci; Anna Teresa Palamara; Enrico Garaci