Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandro Pontremoli is active.

Publication


Featured researches published by Sandro Pontremoli.


Biochemical and Biophysical Research Communications | 1982

Cytosolic calcium dependent proteinase of human erythrocytes: Formation of an enzyme-natural inhibitor complex induced by Ca2+ ions

Edon Melloni; Bianca Sparatore; Franca Salamino; M. Michetti; Sandro Pontremoli

Abstract A calcium dependent soluble neutral proteinase has been purified to homogeneity from human erythrocytes. The proteinase is composed of two different polypeptide chains of approximate molecular weight of 80 k and 30 k daltons. Maximum activity is expressed at 50 μM Ca 2+ . The enzyme is regulated by reversible binding to a natural inhibitor, also present in the cytosolic compartment. The formation of the enzyme-inhibitor complex is dependent on high Ca 2+ concentrations and is reversed by chelating agents. The proteinase is inhibited by leupeptin, chymostatin, antipain and free hemin and has a marked specificity for native or denatured human globin chains.


Journal of Biological Chemistry | 1998

MOLECULAR AND FUNCTIONAL PROPERTIES OF A CALPAIN ACTIVATOR PROTEIN SPECIFIC FOR MU -ISOFORMS

Edon Melloni; M. Michetti; Franca Salamino; Sandro Pontremoli

A natural calpain activator protein has been isolated from bovine brain and characterized in its properties and molecular structure. The protein is a homodimer with a molecular mass of about 30 kDa and results in being almost identical to UK114 goat liver protein. Significant similarities with mouse HR12 protein were also observed, whereas a lower degree of similarity was found with a family of heat-responsive proteins named YJGF and YABJ fromHaemophilus influenzae and Bacillus subtilis, respectively. The brain activator expresses a strict specificity for the μ-calpain isoform, being completely ineffective on the m-calpain form. As expected, also UK114 was found to possess calpain-activating properties, indistinguishable from those of bovine brain activator. A protein showing the same calpain-activating activity has been also isolated from human red cells, indicating that this factor is widely expressed. All these activators are efficient on μ-calpain independently from the source of the proteinase. The high degree of specificity of the calpain activator for a single calpain isoform may be relevant for the understanding of sophisticated intracellular mechanisms underlying intracellular proteolysis. These data are indicating the existence of a new component of the Ca2+-dependent proteolytic system, constituted of members of a chaperonin-like protein family and capable of promoting intracellular calpain activation.


Journal of Immunology | 2007

Selective Proinflammatory Activation of Astrocytes by High-Mobility Group Box 1 Protein Signaling

Marco Pedrazzi; Mauro Patrone; Mario Passalacqua; Elia Ranzato; Diego Colamassaro; Bianca Sparatore; Sandro Pontremoli; Edon Melloni

Extracellular high-mobility group box 1 protein (HMGB1) triggers inflammatory events in the brain. We demonstrate that astrocytes, the main glial cells in the brain, acquire a specific reactive phenotype when exposed to HMGB1. This cell activation, which involves the receptor for advanced glycation end-products and the MAPK/ERK1/2 cascade, results in the transcriptional/translational induction of a restricted number of inflammatory mediators, including cyclooxygenase-2, matrix metalloproteinase-9, and several chemokines of the CC and CXC families. The mixture of factors released by HMGB1-reactive astrocytes displays a potent chemotactic activity on human monocytic cells. This study is the first to suggest that HMGB1/astrocyte interaction plays a specific functional role in the progression of inflammatory processes in the CNS by facilitating local leukocyte infiltration.


Journal of Neurochemistry | 2006

Stimulation of excitatory amino acid release from adult mouse brain glia subcellular particles by high mobility group box 1 protein

Marco Pedrazzi; Luca Raiteri; Giambattista Bonanno; Mauro Patrone; Sabina Ledda; Mario Passalacqua; Marco Milanese; Edon Melloni; Maurizio Raiteri; Sandro Pontremoli; Bianca Sparatore

The multifunctional protein high mobility group box 1 (HMGB1) is expressed in hippocampus and cerebellum of adult mouse brain. Our aim was to determine whether HMGB1 affects glutamatergic transmission by monitoring neurotransmitter release from glial (gliosomes) and neuronal (synaptosomes) re‐sealed subcellular particles isolated from cerebellum and hippocampus. HMGB1 induced release of the glutamate analogue [3H]d‐aspartate form gliosomes in a concentration‐dependent manner, whereas nerve terminals were insensitive to the protein. The HMGB1‐evoked release of [3H]d‐aspartate was independent of modifications of cytosolic Ca2+ , but it was blocked by dl‐threo‐β‐benzyloxyaspartate (dl‐TBOA), an inhibitor of glutamate transporters. HMGB1 also stimulated the release of endogenous glutamate in a Ca2+‐independent and dl‐TBOA‐sensitive manner. These findings suggest the involvement of carrier‐mediated release. Moreover, dihydrokainic acid, a selective inhibitor of glutamate transporter 1 (GLT1), does not block the effect of HMGB1, indicating a role for the glial glutamate‐aspartate transporter (GLAST) subtype in this response. We also demonstrate that HMGB1/glial particles association is promoted by Ca2+. Furthermore, although HMGB1 can physically interact with GLAST and the receptor for advanced glycation end products (RAGE), only its binding with RAGE is promoted by Ca2+. These results suggest that the HMGB1 cytokine could act as a modulator of glutamate homeostasis in adult mammal brain.


FEBS Letters | 1996

Autolysis of human erythrocyte calpain produces two active enzyme forms with different cell localization

M. Michetti; F. Salamino; Ilaria Tedesco; Monica Averna; Roberto Minafra; Edon Melloni; Sandro Pontremoli

The 80 kDa human erythrocyte calpain, when exposed to Ca2+, undergoes autoproteolysis that generates a 75 kDa species, with an increase in Ca2+ affinity. It is demonstrated here that this proteolytic modification proceeds through an initial step producing a 78 kDa form which is rapidly converted to the 75 kDa one. In the presence of the calpain inhibitor E‐64, the 78 kDa form accumulates and only small amounts of the 75 kDa polypeptide are formed. Following loading of erythrocytes with micromolar concentration of Ca2+, in the presence of the ionophore A23187, the native 80 kDa calpain subunit is extensively translocated and retained at the plasma membrane, this process is accompanied by the appearance of only a small amount of the 75 kDa subunit which is released into the soluble fraction of the cells. Following exposure to μM Ca2+, membrane‐bound 80 kDa calpain is converted to the 78 kDa form, this conversion being linearly correlated with the expression of the proteinase activity. Taken together, these results demonstrate that the initial step in calpain activation involves Ca2+‐induced translocation to the inner surface of plasma membranes. In the membrane‐bound form the native inactive 80 kDa subunit is converted through intramolecular autoproteolysis to a locally active 78 kDa form. Further autoproteolytic intermolecular digestion converts the 78 kDa to the 75 kDa form, no longer being retained by the membrane. This process generates two active forms of calpain, with different intracellular localisations.


Cell Calcium | 1994

The plasma membrane calcium pump is the preferred calpain substrate within the erythrocyte

Franca Salamino; Bianca Sparatore; Edon Melloni; M. Michetti; P.L. Viotti; Sandro Pontremoli; Ernesto Carafoli

The activation of calpain in normal human erythrocytes incubated in the presence of Ca2+ and the Ca2+ ionophore A23187 led to the decline of the Ca(2+)-dependent ATPase activity of the cells. Preloading of the erythrocyte with an anticalpain antibody prevented the decline. The pump was also inactivated by applied to isolated erythrocyte plasma membranes. The decline of the pump activity corresponded to the degradation of the pump protein and was inversely correlated to the amount of the natural inhibitor of calpain, calpastatin, present in the cells. In erythrocytes containing only 50% of the normal level the degradation started at a concentration of Ca2+ significantly lower than in normal cells. A comparison of the concentrations of Ca2+ required for the degradation of a number of erythrocyte membrane proteins showed that the Ca2+ pump and band 3 were the most sensitive. All other membrane proteins tested were attacked at higher levels of intracellular Ca2+. Thus, the degradation of the Ca2+ pump protein may be a simple and sensitive means to monitor calpain activation in vivo. Furthermore, the results have shown that the calpastatin level correlated directly with the amount of activable calpain and with the concentration of Ca2+ required to trigger the activation process.


Biochemical Journal | 2001

Changes in intracellular calpastatin localization are mediated by reversible phosphorylation.

Monica Averna; Roberta De Tullio; Mario Passalacqua; Franca Salamino; Sandro Pontremoli; Edon Melloni

We have previously reported that, in neuroblastoma LAN-5 cells, calpastatin is in an aggregated state, close to the cell nucleus [de Tullio, Passalacqua, Averna, Salamino, Melloni and Pontremoli (1999) Biochem. J. 343, 467-472]. In the present paper, we demonstrate that aggregated calpastatin is predominantly in a phosphorylated state. An increase in intracellular free [Ca2+] induces both dephosphorylation of calpastatin, through the action of a phosphoprotein phosphatase, and its redistribution as a soluble inhibitor species. cAMP, but not PMA-induced phosphorylation, reverses calpastatin distribution favouring its aggregation. This intracellular reversible mechanism, regulating the level of cytosolic calpastatin, could be considered a strategy through which calpain can escape calpastatin inhibition, especially during earlier steps of its activation process.


Biochemical and Biophysical Research Communications | 1985

Binding to erythrocyte membrane is the physiological mechanism for activation of Ca2+-dependent neutral proteinase

Sandro Pontremoli; Edon Melloni; Bianca Sparatore; Franca Salamino; M. Michetti; Oliviero Sacco; B.L. Horecker

In the presence of micromolar concentrations of Ca2+ the catalytic 80 kDa subunit of human erythrocyte procalpain binds to the cytosolic surface of the erythrocyte membrane. Binding is rapid, highly specific and is reversed by the removal of Ca2+. In the bound form the 80 kDa catalytic subunit undergoes a rapid conversion to calpain, the active 75 kDa Ca2+-requiring proteinase. The activated proteinase produces extensive degradation of membrane components, particularly of band 4.1 and 2.1 proteins. Binding to membranes may represent an obligatory physiological mechanism for the conversion of procalpain to calpain.


Archives of Biochemistry and Biophysics | 1991

Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains

Sandro Pontremoli; Edon Melloni; P.L. Viotti; M. Michetti; Franca Salamino; B L Horecker

Two forms of calpastatin, differing in their specificity for the homologous calpain isozymes I and II, have been separated from rat skeletal muscle extracts and purified to homogeneity. Calpastatin I, the first form to elute in chromatography on DE32, is more effective against calpain I, while calpastatin II is more effective as an inhibitor of calpain II. Based on their molecular mass (approximately 105 kDa) both calpastatin forms belong to the high molecular mass class found in muscles of other animal species (Murachi, T., 1989, Biochem. Int. 18, 263-294). For calpain I, which is active with low (mu-M) concentrations of Ca2+, maximum inhibition with either calpastatin form was observed over a wide range of Ca2+ concentrations. With calpain II, which requires high (mM) concentrations of Ca2+ for activity, maximum inhibition required Ca2+ concentrations above 1 mM. Both calpastatin forms were found to be highly sensitive to degradation by calpain II, but almost completely resistant to degradation by calpain I. Degradation of calpastatin by calpain II is competitively inhibited by the addition of a calpain substrate. Isovaleryl carnitine (IVC), an intermediate product of L-leucine catabolism, previously demonstrated to be a potent and specific activator of rat skeletal muscle calpain II (Pontremoli, S., Melloni, E., Viotti, P. L., Michetti, M., Di Lisa, F., and Siliprandi, N., 1990. Biochem. Biophys. Res. Commun. 167, 373-380) greatly enhances the rate of degradation of calpastatins by calpain II. IVC, which decreases the Ca2+ requirement for maximal calpain II activity, also decreases the concentration of Ca2+ required for digestion of the inhibitor. For calpain II, regulation by either calpastatins may occur only in the presence of high [Ca2+].


Journal of Biological Chemistry | 2000

Acyl-CoA-binding Protein Is a Potent m-Calpain Activator

Edon Melloni; Monica Averna; Franca Salamino; Bianca Sparatore; Roberto Minafra; Sandro Pontremoli

Acyl-CoA-binding protein, a 20-kDa homodimer that exerts many physiological functions, promotes activation of the classic calpain forms, most markedly that of the m-isozyme. This protein factor was purified from rat skeletal muscle and was also expressed inEscherichia coli. Both native and recombinant acyl-CoA-binding proteins show the same molecular properties and an identical capacity to decrease the [Ca2+] required for m-calpain activity. The binding of long-chain acyl-CoAs to acyl-CoA-binding protein does not modify the activating effect on calpains. Acyl-CoA-binding protein seems to be involved in the m-calpain regulation process, whereas the previously identified UK114 activator is a specific modulator of μ-calpain. Acyl-CoA-binding protein is proposed as a new component of the Ca2+-dependent proteolytic system. A comparative analysis among levels of classic calpains and their activator proteins is also reported.

Collaboration


Dive into the Sandro Pontremoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge