Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandro Santagata is active.

Publication


Featured researches published by Sandro Santagata.


PLOS ONE | 2009

Profiling Critical Cancer Gene Mutations in Clinical Tumor Samples

Laura E. MacConaill; Catarina D. Campbell; Sarah M. Kehoe; Adam J. Bass; Charles Hatton; Lili Niu; Matthew M. Davis; Keluo Yao; Megan Hanna; Chandrani Mondal; Lauren Luongo; Caroline Emery; Alissa C. Baker; Juliet Philips; Deborah J. Goff; Michelangelo Fiorentino; Mark A. Rubin; Kornelia Polyak; Jennifer Chan; Yuexiang Wang; Jonathan A. Fletcher; Sandro Santagata; Gianni Corso; Franco Roviello; Ramesh A. Shivdasani; Mark W. Kieran; Keith L. Ligon; Charles D. Stiles; William C. Hahn; Matthew Meyerson

Background Detection of critical cancer gene mutations in clinical tumor specimens may predict patient outcomes and inform treatment options; however, high-throughput mutation profiling remains underdeveloped as a diagnostic approach. We report the implementation of a genotyping and validation algorithm that enables robust tumor mutation profiling in the clinical setting. Methodology We developed and implemented an optimized mutation profiling platform (“OncoMap”) to interrogate ∼400 mutations in 33 known oncogenes and tumor suppressors, many of which are known to predict response or resistance to targeted therapies. The performance of OncoMap was analyzed using DNA derived from both frozen and FFPE clinical material in a diverse set of cancer types. A subsequent in-depth analysis was conducted on histologically and clinically annotated pediatric gliomas. The sensitivity and specificity of OncoMap were 93.8% and 100% in fresh frozen tissue; and 89.3% and 99.4% in FFPE-derived DNA. We detected known mutations at the expected frequencies in common cancers, as well as novel mutations in adult and pediatric cancers that are likely to predict heightened response or resistance to existing or developmental cancer therapies. OncoMap profiles also support a new molecular stratification of pediatric low-grade gliomas based on BRAF mutations that may have immediate clinical impact. Conclusions Our results demonstrate the clinical feasibility of high-throughput mutation profiling to query a large panel of “actionable” cancer gene mutations. In the future, this type of approach may be incorporated into both cancer epidemiologic studies and clinical decision making to specify the use of many targeted anticancer agents.


Journal of Clinical Oncology | 2011

Integrative Genomic Analysis of Medulloblastoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome

Yoon-Jae Cho; Aviad Tsherniak; Pablo Tamayo; Sandro Santagata; Azra H. Ligon; Heidi Greulich; Rameen Berhoukim; Vladimir Amani; Liliana Goumnerova; Charles G. Eberhart; Ching C. Lau; James M. Olson; Richard J. Gilbertson; Amar Gajjar; Olivier Delattre; Marcel Kool; Keith L. Ligon; Matthew Meyerson; Jill P. Mesirov; Scott L. Pomeroy

PURPOSE Medulloblastomas are heterogeneous tumors that collectively represent the most common malignant brain tumor in children. To understand the molecular characteristics underlying their heterogeneity and to identify whether such characteristics represent risk factors for patients with this disease, we performed an integrated genomic analysis of a large series of primary tumors. PATIENTS AND METHODS We profiled the mRNA transcriptome of 194 medulloblastomas and performed high-density single nucleotide polymorphism array and miRNA analysis on 115 and 98 of these, respectively. Non-negative matrix factorization-based clustering of mRNA expression data was used to identify molecular subgroups of medulloblastoma; DNA copy number, miRNA profiles, and clinical outcomes were analyzed for each. We additionally validated our findings in three previously published independent medulloblastoma data sets. RESULTS Identified are six molecular subgroups of medulloblastoma, each with a unique combination of numerical and structural chromosomal aberrations that globally influence mRNA and miRNA expression. We reveal the relative contribution of each subgroup to clinical outcome as a whole and show that a previously unidentified molecular subgroup, characterized genetically by c-MYC copy number gains and transcriptionally by enrichment of photoreceptor pathways and increased miR-183∼96∼182 expression, is associated with significantly lower rates of event-free and overall survivals. CONCLUSION Our results detail the complex genomic heterogeneity of medulloblastomas and identify a previously unrecognized molecular subgroup with poor clinical outcome for which more effective therapeutic strategies should be developed.


Cell | 1998

Partial V(D)J Recombination Activity Leads to Omenn Syndrome

Anna Villa; Sandro Santagata; Fabio Bozzi; Silvia Giliani; Annalisa Frattini; Luisa Imberti; Luisa Benerini Gatta; Hans D. Ochs; Klaus Schwarz; Luigi D. Notarangelo; Paolo Vezzoni; Eugenia Spanopoulou

Genomic rearrangement of the antigen receptor loci is initiated by the two lymphoid-specific proteins Rag-1 and Rag-2. Null mutations in either of the two proteins abrogate initiation of V(D)J recombination and cause severe combined immunodeficiency with complete absence of mature B and T lymphocytes. We report here that patients with Omenn syndrome, a severe immunodeficiency characterized by the presence of activated, anergic, oligoclonal T cells, hypereosinophilia, and high IgE levels, bear missense mutations in either the Rag-1 or Rag-2 genes that result in partial activity of the two proteins. Two of the amino acid substitutions map within the Rag-1 homeodomain and decrease DNA binding activity, while three others lower the efficiency of Rag-1/Rag-2 interaction. These findings provide evidence to indicate that the immunodeficiency manifested in patients with Omenn syndrome arises from mutations that decrease the efficiency of V(D)J recombination.


Cell | 2010

Derivation of Pre-X Inactivation Human Embryonic Stem Cells under Physiological Oxygen Concentrations

Christopher J. Lengner; Alexander A. Gimelbrant; Jennifer A. Erwin; Albert W. Cheng; Matthew G. Guenther; G. Grant Welstead; Raaji K. Alagappan; Garrett M. Frampton; Ping Xu; Julien Muffat; Sandro Santagata; Doug Powers; C. Brent Barrett; Richard A. Young; Jeannie T. Lee; Rudolf Jaenisch; Maisam Mitalipova

The presence of two active X chromosomes (XaXa) is a hallmark of the ground state of pluripotency specific to murine embryonic stem cells (ESCs). Human ESCs (hESCs) invariably exhibit signs of X chromosome inactivation (XCI) and are considered developmentally more advanced than their murine counterparts. We describe the establishment of XaXa hESCs derived under physiological oxygen concentrations. Using these cell lines, we demonstrate that (1) differentiation of hESCs induces random XCI in a manner similar to murine ESCs, (2) chronic exposure to atmospheric oxygen is sufficient to induce irreversible XCI with minor changes of the transcriptome, (3) the Xa exhibits heavy methylation of the XIST promoter region, and (4) XCI is associated with demethylation and transcriptional activation of XIST along with H3K27-me3 deposition across the Xi. These findings indicate that the human blastocyst contains pre-X-inactivation cells and that this state is preserved in vitro through culture under physiological oxygen.


Cancer Research | 2004

JAGGED1 Expression Is Associated with Prostate Cancer Metastasis and Recurrence

Sandro Santagata; Francesca Demichelis; Alberto Riva; Sooryanarayana Varambally; Matthias D. Hofer; Jeffery L. Kutok; Robert Kim; Jeffery Tang; James E. Montie; Arul M. Chinnaiyan; Mark A. Rubin

Recent studies suggest that NOTCH signaling can promote epithelial-mesenchymal transitions and augment signaling through AKT, an important growth and survival pathway in epithelial cells and prostate cancer in particular. Here we show that JAGGED1, a NOTCH receptor ligand, is significantly more highly expressed in metastatic prostate cancer as compared with localized prostate cancer or benign prostatic tissues, based on immunohistochemical analysis of JAGGED1 expression in human tumor samples from 154 men. Furthermore, high JAGGED1 expression in a subset of clinically localized tumors was significantly associated with recurrence, independent of other clinical parameters. These findings support a model in which dysregulation of JAGGED1 protein levels plays a role in prostate cancer progression and metastasis and suggest that JAGGED1 may be a useful marker in distinguishing indolent and aggressive prostate cancers.


Nature Genetics | 2013

Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations

Priscilla K. Brastianos; Peleg Horowitz; Sandro Santagata; Robert T. Jones; Aaron McKenna; Gad Getz; Keith L. Ligon; Emanuele Palescandolo; Paul Van Hummelen; Matthew Ducar; Alina Raza; Ashwini Sunkavalli; Laura E. MacConaill; Anat Stemmer-Rachamimov; David N. Louis; William C. Hahn; Ian F. Dunn; Rameen Beroukhim

Meningiomas are the most common primary nervous system tumor. The tumor suppressor NF2 is disrupted in approximately half of all meningiomas, but the complete spectrum of genetic changes remains undefined. We performed whole-genome or whole-exome sequencing on 17 meningiomas and focused sequencing on an additional 48 tumors to identify and validate somatic genetic alterations. Most meningiomas had simple genomes, with fewer mutations, rearrangements and copy-number alterations than reported in other tumors in adults. However, several meningiomas harbored more complex patterns of copy-number changes and rearrangements, including one tumor with chromothripsis. We confirmed focal NF2 inactivation in 43% of tumors and found alterations in epigenetic modifiers in an additional 8% of tumors. A subset of meningiomas lacking NF2 alterations harbored recurrent oncogenic mutations in AKT1 (p.Glu17Lys) and SMO (p.Trp535Leu) and exhibited immunohistochemical evidence of activation of these pathways. These mutations were present in therapeutically challenging tumors of the skull base and higher grade. These results begin to define the spectrum of genetic alterations in meningiomas and identify potential therapeutic targets.


Cancer Discovery | 2015

Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets

Priscilla K. Brastianos; Scott L. Carter; Sandro Santagata; Daniel P. Cahill; Amaro Taylor-Weiner; Robert T. Jones; Eliezer M. Van Allen; Michael S. Lawrence; Peleg Horowitz; Kristian Cibulskis; Keith L. Ligon; Josep Tabernero; Joan Seoane; Elena Martinez-Saez; William T. Curry; Ian F. Dunn; Sun Ha Paek; Sung-Hye Park; Aaron McKenna; Aaron Chevalier; Mara Rosenberg; Fred G. Barker; Corey M. Gill; Paul Van Hummelen; Aaron R. Thorner; Bruce E. Johnson; Mai P. Hoang; Toni K. Choueiri; Sabina Signoretti; Carrie Sougnez

UNLABELLED Brain metastases are associated with a dismal prognosis. Whether brain metastases harbor distinct genetic alterations beyond those observed in primary tumors is unknown. We performed whole-exome sequencing of 86 matched brain metastases, primary tumors, and normal tissue. In all clonally related cancer samples, we observed branched evolution, where all metastatic and primary sites shared a common ancestor yet continued to evolve independently. In 53% of cases, we found potentially clinically informative alterations in the brain metastases not detected in the matched primary-tumor sample. In contrast, spatially and temporally separated brain metastasis sites were genetically homogenous. Distal extracranial and regional lymph node metastases were highly divergent from brain metastases. We detected alterations associated with sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors in the brain metastases. Genomic analysis of brain metastases provides an opportunity to identify potentially clinically informative alterations not detected in clinically sampled primary tumors, regional lymph nodes, or extracranial metastases. SIGNIFICANCE Decisions for individualized therapies in patients with brain metastasis are often made from primary-tumor biopsies. We demonstrate that clinically actionable alterations present in brain metastases are frequently not detected in primary biopsies, suggesting that sequencing of primary biopsies alone may miss a substantial number of opportunities for targeted therapy.


Cell | 1996

THE HOMEODOMAIN REGION OF RAG-1 REVEALS THE PARALLEL MECHANISMS OF BACTERIAL AND V(D)J RECOMBINATION

Eugenia Spanopoulou; Florina Zaitseva; Fu-Hou Wang; Sandro Santagata; David Baltimore; George Panayotou

The V(D)J recombinase subunits Rag-1 and Rag-2 mediate assembly of antigen receptor gene segments. We studied the mechanisms of DNA recognition by Rag-1/Rag-2 using surface plasmon resonance. The critical step for signal recognition is binding of Rag-1 to the nonamer. This is achieved by a region of Rag-1 homologous to the DNA-binding domain of the Hin family of bacterial invertases and to homeodomain proteins. Strikingly, the Hin homeodomain can functionally substitute for the Rag-1 homologous region. Rag-1 also interacts with the heptamer but with low affinity. Rag-2 shows no direct binding to DNA. Once the Rag-1/Rag-2 complex is engaged on the DNA, subsequent cleavage is directed by the heptamer sequence. This order of events remarkably parallels mechanisms that mediate transposition in bacteria and nematodes.


PLOS ONE | 2011

BRAF V600E Mutations are Common in Pleomorphic Xanthoastrocytoma: Diagnostic and Therapeutic Implications

Dora Dias-Santagata; Quynh Lam; Kathy Vernovsky; Natalie Vena; Jochen K. Lennerz; Darrell R. Borger; Tracy T. Batchelor; Keith L. Ligon; A. John Iafrate; Azra H. Ligon; David N. Louis; Sandro Santagata

Pleomorphic xanthoastrocytoma (PXA) is low-grade glial neoplasm principally affecting children and young adults. Approximately 40% of PXA are reported to recur within 10 years of primary resection. Upon recurrence, patients receive radiation therapy and conventional chemotherapeutics designed for high-grade gliomas. Genetic changes that can be targeted by selective therapeutics have not been extensively evaluated in PXA and ancillary diagnostic tests to help discriminate PXA from other pleomorphic and often more aggressive astrocytic malignancies are limited. In this study, we apply the SNaPshot multiplexed targeted sequencing platform in the analysis of brain tumors to interrogate 60 genetic loci that are frequently mutated in 15 cancer genes. In our analysis we detect BRAF V600E mutations in 12 of 20 (60%) WHO grade II PXA, in 1 of 6 (17%) PXA with anaplasia and in 1 glioblastoma arising in a PXA. Phospho-ERK was detected in all tumors independent of the BRAF mutation status. BRAF duplication was not detected in any of the PXA cases. BRAF V600E mutations were identified in only 2 of 71 (2.8%) glioblastoma (GBM) analyzed, including 1 of 9 (11.1%) giant cell GBM (gcGBM). The finding that BRAF V600E mutations are common in the majority of PXA has important therapeutic implications and may help in differentiating less aggressive PXAs from lethal gcGBMs and GBMs.


Science Translational Medicine | 2013

Rapid, Label-Free Detection of Brain Tumors with Stimulated Raman Scattering Microscopy

Minbiao Ji; Daniel A. Orringer; Christian W. Freudiger; Shakti Ramkissoon; Xiaohui Liu; Darryl Lau; Alexandra J. Golby; Isaiah Norton; Marika Hayashi; Nathalie Y. R. Agar; Geoffrey S. Young; Cathie Spino; Sandro Santagata; Sandra Camelo-Piragua; Keith L. Ligon; Oren Sagher; Xiaoliang Sunney Xie

Stimulated Raman scattering microscopy provides a rapid, label-free means of detecting tumor infiltration of brain tissue ex vivo and in vivo. Virtual Histology During brain tumor surgery, precision is key. Removing healthy tissue can cause neurologic deficits; leaving behind tumor tissue can allow cancer to spread and treatment to fail. To help the surgeon clearly see tumor versus normal tissue, Ji and colleagues developed a stimulated Raman scattering (SRS) microscopy method and demonstrated its ability to identify malignant human brain tissue. In SRS microscopy, laser beams are directed at the tissue sample to generate a series of output signals called “Raman spectra.” These spectra depend on the molecular composition of the tissue. Ji et al. implanted human brain cancer (glioblastoma) cells into mice, allowed them to infiltrate and grow into tumors, and then removed slices for SRS imaging. From the resulting spectra, the authors were able to differentiate the two major components of brain tissue—lipid-rich white matter and protein-rich cortex—as well as tumors, which are full of proteins. Intraoperatively, using an imaging window into mouse brains, the authors found that SRS microscopy could locate tumor infiltration in areas that appeared normal by eye, which suggests that this tool could be applied during surgery. Imaging fresh tissue slices ex vivo could also complement or perhaps replace standard hematoxylin and eosin (H&E) staining in the clinic because it avoids artifacts inherent in imaging frozen or fixed tissues. To this end, Ji and colleagues showed that SRS microscopy could identify hypercellular tumor regions in fresh surgical specimens from a patient with glioblastoma. Certain diagnostic features were present in these specimens and readily identified by SRS, including pseudopalisading necrosis and microvascular proliferation. The next step will be to apply SRS microscopy to a large collection of human specimens to see whether this technology may be useful in quickly distinguishing glioblastoma from healthy tissue, both outside and inside the operating room. Surgery is an essential component in the treatment of brain tumors. However, delineating tumor from normal brain remains a major challenge. We describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology, SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from nonneoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and hematoxylin and eosin microscopy for detection of glioma infiltration (κ = 0.98). Finally, we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue, SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct.

Collaboration


Dive into the Sandro Santagata's collaboration.

Top Co-Authors

Avatar

Ian F. Dunn

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malak Abedalthagafi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenya Linda Bi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke Whitesell

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Lindquist

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge